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Figure 1: Our ORV generates action-conditioned robot manipulation videos under the guidance of
the 4D occupancy (top) with higher control precision, performs multiview videos generation to build
realistic 4D embodied world (middle) and conducts simulation-to-real videos transfer (bottom).

Abstract

Acquiring real-world robotic simulation data through teleoperation is notoriously
time-consuming and labor-intensive. Recently, action-driven generative mod-
els have gained widespread adoption in robot learning and simulation, as they
eliminate safety concerns and reduce maintenance efforts. However, the action
sequences used in these methods often result in limited control precision and
poor generalization due to their globally coarse alignment. To address these
limitations, we propose ORV, an Occupancy-centric Robot Video generation
framework, which utilizes 4D semantic occupancy sequences as a fine-grained
representation to provide more accurate semantic and geometric guidance for video
generation. By leveraging occupancy-based representations, ORV enables seam-
less translation of simulation data into photorealistic robot videos, while ensuring
high temporal consistency and precise controllability. Furthermore, our frame-
work supports the simultaneous generation of multi-view videos of robot gripping
operations—an important capability for downstream robotic learning tasks. Exten-
sive experimental results demonstrate that ORV consistently outperforms existing
baseline methods across various datasets and sub-tasks. Demo, Code & Model:
https://orangesodahub.github.io/ORV
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1 Introduction

Learning realistic simulators for robotic manipulation is essential for scaling robot learning [1–4], as
they enable efficient data collection, safe policy development, and reproducible experiments without
the cost and constraints of real-world interaction. Prior physics-based methods [5–9] have attempted
to capture the full complexity of real-world scenes, exploring domain randomization, photorealistic
rendering, and imitation learning. Yet these methods require extensive engineering efforts, struggle
to scale across diverse tasks, and often provide limited visual fidelity—unrealistic textures, motions,
and object dynamics that hinder policy generalization [10, 11].

Recent breakthroughs in generative models, e.g., video generation models [12–14]—offer powerful
foundation models for such simulators. They serve as strong visual priors and are capable of synthesiz-
ing high-fidelity manipulation videos and most importantly, are controllable through various external
signals. Most recently, IRASim [15] and RoboMaster [16] generate realistic robot manipulation
videos conditioned on 3D or 2D trajectories, while UniSim [17], EnerVerse [18] and TesserAct [19]
employ multimodal commands or pure language inputs to condition future video prediction.

Despite their promising results, these methods often rely on high-level action sequences [15, 16] or
task-level text prompts [19] as the controls, which suffer from limited alignment with the low-level
visual content. This misalignment results in degraded motion accuracy and leads to lower video
quality. Additionally, these global signals lack the spatial granularity required for fine-grained robot
manipulation tasks, especially when precise physical interactions are needed.

To this end, we propose ORV, a 4D occupancy-centric framework for robot video generation that
achieves high-fidelity video synthesis, with more precise controllability and strong generalizations
(Fig. 1 top row), performs multiview robot video generation (Fig. 1 mid row) and conducts simulation-
to-real dynamics transfer (Fig. 1 bottom row). The key idea is to leverage 4D semantic occupancy as
intermediate representations and take the spatial-temporal-aligned guidance maps from renderings
as the visual control signals. These 4D occupancy-derived visual signals preserve scene geometry
and semantics, offering localized supervision that naturally guides the generation process. Moreover,
recent advances in 3D semantic occupancy learning [20–22] have proven effective in representing
structure in the field of self-driving and robotics.

Building on such an occupancy-centric pipeline, we further present ORV-MV, which simultaneously
generates multiview-consistent robot videos following motion controls, since multiview observations
can largely help with robot learning [23–25]; and ORV-S2R, which leverages occupancy as a bridge
for sim-to-real adaptation, effectively narrowing the domain gap during inference. Some concurrent
works [26, 27] also present some progress on transferring various high-level conditions to real-world
RGB videos. Furthermore, to facilitate our training process, we also propose an efficient pipeline for
curating occupancy data tailored to robot scenarios, leveraging the mainstream foundation models [28–
31], as no high-quality public occupancy datasets are currently available. Together, these components
form a scalable, fine-grained, and physically grounded system for advancing robot video generation.

The contributions of our framework can be summarized as follows:

• We propose an occupancy-centric pipeline for robot video generation, where 4D semantic
occupancy sequences serve as efficient intermediate representations that enable high-quality
and more precisely controllable generation.

• Facilitated with the occupancy representation, our framework seamlessly integrates physical
simulators and generative models to enable realistic and scalable data synthesis.

• We curate a series of high-quality semantic occupancy datasets that accurately reflect 3D
robot arm/gripper motions along with rich semantic and geometric information.

• Extensive experiments demonstrate the effectiveness of our method, particularly in terms of
generation quality, motion precision, and transfer generalizability.

2 Related Work

2.1 Controllable Video Generation

Recent advances have greatly improved the realism of controllable video generation, particularly
for applications in autonomous driving and embodied intelligence[32–41, 20, 42–53]. Early
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methods like MAGE [32] aligned appearance and motion modalities using a Motion Anchor-based
generator, while ControlVideo [33] introduced a training-free approach with cross-frame attention
for text-to-video synthesis. Works such as DriveDreamer[54], MagicDrive [34], and Panacea[55]
focus on temporal video generation, and frameworks like Drive-WM [40] and Vista[36] incorporate
world models to enhance realism. UniScene [20] enables multi-modal scene generation via unified
representations and hierarchical learning. In robotics, methods like Gen2Act[56] leverage video
generation models to infer motion for robot policies, while This&That [57] ensures intent-aligned
synthesis through language and gesture control. VidEgoThink[58] evaluates embodied AI systems
using egocentric video understanding.

2.2 3D Occupancy Representation

Semantic occupancy is a key 3D scene representation for perception and generation tasks[59–62,
37, 63–65]. Methods like MonoScene [60] and FB-Occ[66] focus on monocular and Bird’s Eye
View (BEV) learning, while TPVFormer [62] uses a tri-perspective framework. SurroundOcc[67]
improves estimation with multi-view inputs, and VPD [64] applies diffusion models for prediction.
OccWorld[63] forecasts future states, and OccLlama [68] integrates Large Language Models (LLMs).
Despite advances, frameworks like OccSora[65] still fall short of ground truth quality in temporal
3D generation. Occupancy anticipation methods infer unseen regions to enhance spatial awareness
[69]. Generative approaches such as TRELLIS[70] support flexible 3D outputs, while object-centric
methods refine predictions using 3D semantic Gaussians [71, 72, 21, 73]. GaussianFormer[71] refines
Gaussians via deformable attention, and EmbodiedOcc [72] updates global representations online.
This work introduces an occupancy-centric framework for robot video generation, leveraging 3D
occupancy to bridge the sim-to-real gap and guide high-quality synthesis.

2.3 World Models for Embodied Intelligence

Recent advancements in simulating dynamic environments have fueled interest in world models for
robotics and embodied intelligence [15, 17, 74, 18, 75, 56, 76–87, 26]. IRASim [15] generates realis-
tic robot action videos from trajectories, enabling scalable learning. UniSim [17] integrates diverse
datasets for high-fidelity training, while ReCamMaster [74] enhances scene synthesis using pre-
trained models. TesserAct [19] produces temporally coherent 4D reconstructions, and EnerVerse [18]
forecasts future spaces with a self-reinforcing pipeline. WorldSimBench [75] benchmarks perceptual
fidelity and task consistency. Human-centric methods like Gen2Act [56] generalize policies to unseen
tasks, and EVA [76] combines visual generation with language reasoning. However, most methods
rely on coarse-grained guidance (e.g., action sequences). In contrast, we propose fine-grained 3D
occupancy representations to improve quality and precision.

3 ORV: Methodology

In this section, we focus on how we address the mentioned issues in robot video generations, including
the control precision, generation quality and reducing the simulation-real gap. We first demonstrate
the semantic occupancy curation pipeline 3.1, then introduce the use of 4D semantic occupancy priors
as the intermediate representation, which efficiently facilitates high-quality and precise controllability
in robot video generation 3.2. After that, our multiview videos generation comes to build 4D
sequences of robot manipulations 3.3. Finally, we discuss the efforts to bridge simulation dynamics
and real-world videos 3.4.

3.1 Semantic Occupancy Data Curation

Since there exists no publicly available high-quality 4D semantic occupancy data, we have designed
an efficient data curation process (as Figure 3) to build pseudo occupancy ground-truth data upon
existing popular robot manipulation video datasets (BridgeV2 [88], Droid [90]), RT-1 [89]). Some
samples of curated data are shown in Figure 2.

Semantics Labeling. Semantics information plays a fundamental role in scene understanding,
recognition, and generation tasks [20]. In robot manipulation scenarios, precise object recognition is
crucial for executing text-instruction-driven operations. While action-conditioned tasks relax this
requirement to some degree, however, physical-world semantic understanding remains essential.
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(a) BridgeV2 Data; Episode #667

frame #16 frame #24 frame #32

(b) RT-1 Data; Episode #1651

frame  #0 frame #8 frame #16

Figure 2: 3D Semantics Occupancy Samples of Dataset BridgeV2 [88] and RT-1 [89]. Better to zoom
in. Refer to Supplementary Materials for more examples.
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Figure 3: Overview of Dataset Curation Pipeline, which consists of four parts: semantics space
construction, occupancy construction, equip occupancy with semantics, and bullet-time occupancy-
to-gaussian renderings in practical usage.

When predicting subsequent frames, the model still needs object categories to accurately infer
next-state dynamics — particularly for distinguishing between rigid bodies, articulated objects, and
deformable materials, each exhibiting distinct physical behaviors.

As illustrated in Figure 3, we split this labeling process into two steps: (1) One-time semantics space
construction upon the entire dataset; (2) Per-video instances association and semantics mapping.
Starting from the raw videos in the dataset, we employ Vision-Language Model (VLM), such as
Qwen-VL-Chat [31], to conduct key-frame captioning (in our case, we force the use of the first frame)
on each video holistically and get the key objects through designed prompts. These captioned objects
contribute to both steps above. For the overall semantics initialization, we perform efficient K-means
clustering on the entire word embeddings of nearly 150K captioned objects. And get a comprehensive
label-set (of size ∼50) as the dataset-level semantic labels, with the trade-off between expressiveness
and cost. For each single video to be labeled, we utilize Grounding DINO [29] to extract initial object
prompts (e.g., bounding-box, segment mask) which are then input to SAM2 [30] to track the instances
starting from the first frame. Having temporally consistent instance masks throughout the video, we
then efficiently map these instances to semantic labels, using the instance-semantic correspondence
and label-set from the first step.

4D Occupancy Generation. This process consists of two subsequent steps: (1) Occupancy
construction; and (2) Equipping occupancy with semantics. We begin with reconstructing sparse 4D
points using Monst3R [28], which is well-suited for robustly estimating 3D structure and camera
motion from dynamic monocular videos. To overcome the inherent sparsity of the points from
Monst3R, we adopt mesh reconstruction for denser points. In our framework, we choose NKSR [91],
which can more effectively fill large holes and is robust to noise. After that, we perform volatilization
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Figure 4: Overview of ORV. For training purposes, we start from Dataset Curation (Sec. 3.1) to pro-
duce high-quality semantic occupancy data. Leveraging pixel-level aligned condition maps from such
3D representation, we generate robot videos that precisely follow the motion instructions (Sec. 3.2).
Furthermore, we introduce ORV-MV (Sec. 3.3) and ORV-S2R (Sec. 3.4), which simultaneously
produce multi-view robot videos and effectively convert the simulation data to real-world videos.

on densified points to obtain the 4D occupancy in canonical space. To acquire an occupancy-wise
semantics label, we project the points onto the image plane to extract the semantic labels from pixels,
followed by majority voting for each voxel.

To render any 2D maps from 4D semantic occupancy, we directly associate each grid with a single
non-learnable Gaussian to save memory and time cost. In this way, it yields a compact yet informative
2D representation that captures the real-world dynamics. Moreover, to enhance the rendering quality,
we employ the adaptive scaling mechanism on the Gaussian primitive based on depth. Specifically,
the size σ follows σ = k · (d̂)α, where d̂ ∈ (0, 1] denotes the normalized depth values in canonical
space, and k, α control the scaling behavior of gaussians in the near and far plane.

3.2 Occupancy-centric Video Generation Model

We choose the pretrained CogVideox-2b [14] (text-to-video) as our foundation model, following the
increasing trend of leveraging advances in scalable video generation for specialized subtasks [19, 92].

Action Conditioning. Following the most straightforward approach to controllable video generation
in robotics manipulation and recent [15, 92, 93], we first directly take the 3D trajectory sequence
(end-effector poses) or actions along with gripper states as a high-level control signals, e.g. A ∈
RT×Daction , where Daction denotes the action dimension. Drawing inspiration from [15, 94], we
inject these 3D action controls to AdaLN to directly modulate the video latents within each DiT
block. More efficiently, we take a chunk-level integration scheme for better alignment between
high-dimensional actions and videos in these extensive modulations. Specifically, we apply frame
compression which strictly aligns with the videos operated by 3D VAE of CogVideoX, to produce
A′ ∈ R

T
r ×r·Daction , where r denotes the temporal compression rate. Then, an additional shallow

MLP (as Action Embedder in Figure 4) is used to get action features ϕ(A′) ∈ R
T
r ×D. It ensures

latent-frame-level alignment between the actions and videos in the latent space. Notably, the action-,
text-, and denoising step-AdaLN all share the same parameters, eliminating the potential explosion in
model size (as the AdaLN accounts for over 1/3 of the parameters of CogVideoX).

Visual Conditioning. While action conditioning provides direct commands for robotic motion,
translating these high-dimensional control signals into consistent and physically plausible pixel-
level transformations presents notable challenges. This is largely due to the complex and diverse
object dynamics present in robot operation videos, including changes in viewpoint flickering, object
deformation, and articulated movements often not fully captured by the action commands. These
complexities make it difficult to reliably infer the underlying 3D spatial actions from 2D observations
and accurately model the relationship between pixel changes and 3D physical motions, impeding
precise generation and leading to inconsistencies and a lack of realism. Thus, we introduce additional
visual conditioning that stems from 3D semantic occupancy.
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Since our 2D visual control signals keep the same spatial resolution as the input observation frames,
pixel-level alignment can be readily achieved. Combined with the frame-level alignment of action
controls, it significantly improves the control accuracy. Specifically, as depicted in Figure 4, we
employ an additional shallow MLP (as Visual Embedder) to learn the visual control features. And
then augment it with the image conditions, after which another zero-initialized projector adds the
visual control signals to the input noise.

Though ControlNet-like [95] offers stronger and more refined pixel-level control, it suffers from a
heavy model size explosion. Moreover, our method prioritizes the control of the 3D actions, following
the baseline methods, while introducing a soft visual control signal (from a hard render-based
procedure) as a simple yet effective auxiliary control. Moreover, directly taking SFT (Supervised
Fine-Tuning) will not undermine the generalization ability of our model, which is detailed in the
Supplementary Materials, leading to comparable performance with ControlNet.

3.3 ORV-MV: Multiview Robot Videos Generation

Figure 5: Overview of ORV-MV, which generates multi-view
robot manipulation videos following various controls.

A complete, high-fidelity 4D scene would
provide significant benefits for robotic pol-
icy learning and other related tasks. Several
concurrent works [19] have demonstrated
the capability to generate high-quality 4D
scenes. However, it only captures a single
surface of the scenes, resulting in notice-
able artifacts and empty regions when the
viewpoint changes. While ORV can fur-
ther showcase the ability to generate and
construct diverse, comprehensive 4D RGB
scenes with realistic visual fidelity.

We extend our controllable single-view
video generation model (Sec. 3.2) to ORV-MV, as depicted in Figure 5. Inspired by recent successes
in multi-view content synthesis [96, 97], we integrate an additional view attention module into each
DiT blocks, which deal with the input latents FV ∈ RB×SV ×D (SV denotes the tokens of the same
patch-level across all views) to enable cross-view interaction. And the original frame attention (as the
‘Singleview Module’ presented in both Figure 5 and Figure 4) layers that process patch-level latents
FP ∈ RB×SP×D (SP denotes the view-independent patch tokens) will be frozen during this stage
of training. We use the multi-view videos from the datasets as the supervision. Note that only the
frame attentions take the 3D temporal controls (e.g. action sequences) as the inputs, while multiview
images also fuse with 2D condition maps. In this way, the model infers the view poses according
to multi-view observations (robot arms, or grippers), then jointly predicts multi-view pixel changes
consistent with 3D controls. Please refer to the supplementary for more architectural details.

3.4 ORV-S2R: Bridge Sim-to-Real via Occupancy

Another extension of our work, ORV-S2R, will further take a small step towards addressing the
significant visual realism gap between simulation data and real-world observations. While prior
efforts [98, 99] have attempted to minimize this discrepancy, our approach offers a direct solution—
we propose that combining physical simulators with expressive neural models presents a more
viable solution. From the reusable geometry assets (e.g. meshes) in simulators, which can be
readily converted to our 3D occupancy representations and then rendered to 2D condition maps,
we can synthesize diverse photorealistic manipulation videos while preserving physical plausibility,
leveraging our ORV model. It eliminates the need for laborious and performance-limited texture
authoring of geometries. Notably, it also hinges on the generalizations of ORV-S2R: supporting
arbitrary visual observations and action inputs, while producing high-quality videos precisely
reflecting all the control signals.

The use of our occupancy also helps bridge the sim-to-real by mitigating the differences in condi-
tioning data quality between simulated environments and the real world. For example, compared
to depth signals from simulators or real-world sensors, our occupancy provides a more adaptable
representation—this coarser yet strictly geometry-aligned format enables the efficient transformation
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Figure 6: Qualitative Results of Controllable Video Generation with full conditions. Given one-
frame observation, ORV predict subsequent 15 frames on validation split of Bridge [88], Droid [90],
RT-1 [89] datasets. Red boxes denotes the first frame input of the video generation; Orange boxes
denotes the ground-truth of the subsequence frames.

Figure 7: Qualitative Results of Sim-to-Real Transfer. Given raw dynamic data (e.g., a tabletop
manipulation scene, which consists of various mesh components) in the simulation environment,
we can transfer them into real-world data, which possesses better visual quality and leads to higher
efficiency than that in original physical simulators.

from both the sensors depth and the simulated depth to occupancy data. Which is particularly valuable
given the significant gap that exists between these two—for instance, simulator depth suffers from an
unstable physical engine, whereas sensor-derived depth contains varying degrees of noise. Therefore,
though our model is trained on real-world data, it can be effectively applied to simulated dynamics
and complete the sim-to-real transfer.

4 Experiments

In this section, we focus on demonstrating the generation quality of ORV, and compare our perfor-
mance with publicly available methods quantitatively and qualitatively.

Table 1: Overview of Datasets used in ORV.

Dataset Embodiment Views Episodes

BridgeV2 [88] WidoxX 1∼3 60k
Droid [90] Franka Panda 2 76k
RT-1 [89] Google Robot 1 120k

Datasets. We train and validate ORV on three
real-world datasets: BridgeV2 [88], Droid [90]
and RT-1 [89], with their basic statistics summa-
rized in Table 1. We sampled video sequences
at specified frame rates to construct approxi-
mately 120k training samples for each dataset,
while randomly selecting around 2.6k samples
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Figure 8: Multiview Videos Generation Results. ORV-MV supports generating multiview videos
with high cross-view consistency from initial frames. We illustrate here ORV-MV generates both
three-view video and two-view video.

for evaluation. All datasets employ 7-DoF action representations, with respective video resolutions in
our work of 16× 320× 480 for BridgeV2 and RT-1, 24× 256× 384 for Droid.

Models. For the development of our ORV, we start from pretrained CogVideoX2b (Text-to-
Video) [14] as our base model. To support the image conditioning, we extend the input channels of
the original CogVideoX2b model, retain the parameters that deal with text input unchanged, while
letting image input channels be zero-initialized. For the action-conditioned base model setup, we train
models on 8×H100 cluster for 30K steps. For depth-semantics guided finetuning and multi-view
video extension, we have an additional 20K steps of training. In our training, we use a total batch
size of 64, a learning rate of 1e-4, and AdamW Optimizer with β1 = 0.9, β2 = 0.95.

4.1 Controllable Video Generation

Results. Table 2 presents the quantitative results of our controllable video generation across,
demonstrating consistent outperformance over most of the baseline methods across various datasets.
Figure 6 shows the qualitative comparison results. According to the highlighted (white) area of
the first example, the baseline fails to faithfully infer the dynamics of objects manipulated by the
robotic gripper—which presents a significant challenge in this task, as no descriptive conditions were
provided for these objects, requiring reasoning based solely on the gripper’s motion and understanding
to physical world. In our results, the carrot’s dynamics exhibits substantially smaller errors.

We provide the details about baselines in the Supplementary Materials. We also validate the general-
ization ability of ORV through in- and out-of-domain tests there.

4.2 Multi-view Videos Generation

Figure 8 depicts the multi-view video generation results of our framework. The first example
demonstrates the robot arm performing a cloth-folding task across three distinct viewpoints, where
the outputs maintain exceptional cross-view consistency. This high-fidelity multi-view generation
enables efficient downstream applications, including photorealistic scene reconstruction and robotics
imitation learning. Note that due to lighting variations, there is a color discrepancy in the input data
itself, so the lighting from the three views is not perfectly consistent.
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Table 2: Evaluation results of video generation on three datasets. (‘-’ denotes model not available)

Method BridgeV2 [88] Droid [90] RT-1 [89]

PSNR↑SSIM↑ FID↓ FVD↓ PSNR↑SSIM↑ FID↓ FVD↓ PSNR↑SSIM↑ FID↓ FVD↓
CogVideoX [14] 19.432 0.752 7.509 83.561 19.238 0.701 6.341 71.536 20.457 0.816 6.243 42.169

AVID [100] - - - - - - - - 25.600 0.852 2.965 24.200
HMA [93] 23.636 0.808 8.849 67.096 21.435 0.821 3.108 47.383 25.424 0.840 7.306 84.165
IRASim [15] 25.276 0.833 10.510 20.910 - - - - 26.048 0.833 5.600 25.580
ORV (Ours) 28.258 0.899 3.418 16.525 22.310 0.841 3.222 34.603 28.214 0.878 4.013 19.931

4.3 Sim-to-Real Transfer

As introduced in Sec. 3.4, our model effectively addresses the data quality challenges in sim-to-real
transfer. Figure 7 demonstrates one of our attempts. From the simulated dynamics in the simulation
environment, we first get its corresponding colored initial frame, and then extend it to video which is
guided by the control signals from the simulation data (e.g., 3D action sequence and rendered visual
conditions from 3D occupancy). To obtain the initial observation frame from the untextured geometry
environment in the physics simulator for video generation, we employ an additional ControlNet
model alongside multiple visual conditions rendered from occupancy. By subsequently combining
these visual condition sequences and action controls, we get realistic manipulation data that faithfully
adheres to physical constraints.

4.4 Ablation Study

Table 3: Ablation Results on Conditioning Types.

Variants Source PSNR↑ SSIM↑ FID↓ FVD↓
base - 25.631 0.873 3.821 17.682

w/ depth Recon. 30.288 0.919 3.061 14.321
Render 28.031 0.896 4.522 18.548

w/ sem. Recon. 28.896 0.901 3.259 16.171
Render 27.911 0.896 3.467 17.053

full cond. Recon. 30.431 0.920 2.998 14.301
Render 28.258 0.899 3.418 16.525

We conducted ablation studies to validate the
effectiveness of our proposed occupancy-centric
visual guidance. Specifically, we trained sep-
arate single-view video generation models un-
der different configurations. We report the abla-
tion results on conditioning types, source, and
training strategy. We test all on the Bridge [88]
dataset. We provide more details in the Supple-
mentary.

Effect of the control signals. Table 3 reveals
the effect of the conditioning types. The results show that incorporation of physical constraints leads
to immediate and significant improvements in video generation quality and motion accuracy, with
the PSNR increasing substantially from ∼ 25 (base model) to ∼ 28. Furthermore, we observe that
the rendering-based conditions perform comparably to those from reconstruction (serving as pseudo
ground truth), which effectively relaxes the stringent quality requirements for physical constraints in
practical application (e.g. Simulation to real transfer).

Table 4: Ablations on Training Strategies.

Variants PSNR↑ SSIM↑ FID↓ FVD↓
from scratch 23.518 0.811 19.357 84.831

from CogVideoX (T2V) 25.631 0.873 3.821 17.682

Effect of the pretraining. We fur-
ther test the benefits of the pretrain-
ing model. As shown in Table 7,
based models trained from the pre-
trained CogVideoX have superior per-
formance compared to from scratch,
particularly on FID and FVD metrics.

5 Conclusions

We introduce ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D
semantic occupancy as additional control signals for more controllable robot video generation. With
our extended ORV-MV and ORV-S2R, multiview video generations are enabled and will produce
a potential high-quality 4D world, which effectively helps with robot learning. Furthermore, the
simulation-to-real gaps can be reduced with the occupancy representation. Extensive experiments
validated our framework. Overall, we provide a powerful and efficient foundation model that supports
various control signals and expect it can enable advancements in other areas of embodied intelligence.
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ORV: 4D Occupancy-centric Robot Video Generation
Supplementary Materials

This supplementary document provides additional analysis and technical details regarding our pro-
posed ORV. We begin with the detailed introduction of all datasets used in our work in Sec. A. We
additionally explain more about our ORV-MV and ORV-S2R in Sec. B and Sec. C. And the additional
experiments and analysis in Sec. D further demonstrate the superiority of our work. After that, we
describe more detailed implementations of our model for any reproduce purpose in Sec. E. Finally, we
showcase additional qualitative results of ORV in Sec. F and have another discussions in Sec. G. Our
demo, code and models are publicly available at https://orangesodahub.github.io/ORV

A Datasets Details

BridgeV2 [88] is a large-scale, diverse collection of robot manipulation data in real-world robotic
platforms. It includes 60096 trajectories, spanning 24 various environments and a wide range of tasks
(e.g., pushing, placing, opening, and insertion). In our experiments, we use the version of 480× 640
(Raw data) for the singleview training and evaluations (keep aligned with the baselines), while use the
version of 256× 256 (RLDS data) for the multiview training and evaluation. BridgeV2 also offers
the 7DoF action and language labels.

Droid [90] has nearly 76K teleoperated trajectories (∼350 hours) spanning 86 tasks in 564 scenes.
It includes multiview (2 side views and 1 wrist view) RGB, depth 7DoF action labels, and language
instructions. In our experiments, we use the version of 180× 320 (RLDS data) for all the training
and evaluations.

RT-1 [89] is a large-scale real-world robot manipulation dataset of over 130K trajectories collected
in office-like environments. Each episode is paired with RGB observation, 7DoF action, and language
labels, across diverse tasks such as picking, placing, and opening. In our experiments, we use the
version of 256× 320 for all the training and evaluations.

All datasets used in our work (BridgeV2 [88], Droid [90], RT-1 [89]) are maintained under CC-BY-4.0
License.

B ORV-MV Details

In Figure 5, we use the multiview 2D conditioning maps to enhance the multiview videos generation
quality, just as we do in single-view video generation 3.2. However, giving that no well-prepared
or publicly available camera parameters data are released in our adapted dataset, we provide more
details about how we get such data in our model training.

Figure A: Illustration of ORV aligning multiview cameras from VGGT [101] under the frame of
Monst3R [28] to get the multiview conditioning sequences.

As described in Sec. 3.1, we extract 4D points from a single-view input (referred to as the anchor
view) using Monst3R [28]. To get multiview conditions, we estimate camera poses across all views in
the dataset using VGGT [101]. Note, however, that these two approaches produce different coordinate
spaces.
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We then have a simple yet efficient approach to combine the advances of Monst3R [28] and
VGGT [101]. As illustrated in Figure A, these two reconstruction methods share a common rule: they
both take the first frame (of Monst3R) or the first view (of VGGT) as their reference coordinate space.
Hence, we perform efficient pixel-wise matching on the first frame (view) to extract the global scale
(α) and shift (β) vectors, which enables the reciprocal transformation between the two coordinate
spaces. In such a way, we can add all other calibrated cameras in the frame of Monst3R. Specifically,
we apply the Linear-Least-Squares Fitting [102] on the depth maps to estimate these values [103], as
Eq. 1:

Solve :min
α,β

∑
i∈V

(αD′
i + β −Di)

2
, (1)

where V means the image space, D and D′ denote the reference depth map from Monst3R and
VGGT, respectively. More efficiently, we omit the shift and use the scale solely in our practice—
again because the exactly identical reference coordinate space is shared, and given that the predicted
3D points from both approaches do not exhibit significant offset errors. Figure B shows an example
of the camera poses alignment by simply estimating the scale vector. Given the reconstructed 4D
points (occupancy) from the reference view, we can render the conditioning sequences from all views
(reference view + calibrated side views).

Figure B: Example of transferring multiview poses from VGGT [101] to Monst3R [28]. The
comparison of calibrated side views and the side views demonstrates the efficiency.

C ORV-S2R Details

As depicted in Figure C, our simulated tabletop manipulation environments are constructed within
the Maniskill [104] framework. The primary objective is to generate comprehensive occupancy data
from diverse manipulation scenarios. This occupancy data serves as a crucial conditional input for
a subsequent model designed to synthesize high-fidelity images. The generation process involves
careful scene construction, strategic object placement, and the development of a capable grasping
policy to interact with objects and thereby produce the necessary spatial occupancy information.

Figure C: Illustration of our simulation-to-real pipeline. We build simulated dynamics in popular
simulation tools (e.g., ManiSkill [104], and produce plausible geometries with generated motions.
After that, with ORV-S2R, we transforme them into real-world videos.

We populate our scene layouts by first collecting a wide array of 3D object assets from established
publicly available libraries. To further expand the variety of objects and introduce novel geometries,
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we also employ image-to-3D reconstruction techniques [105, 106] to generate new assets from 2D
images. Within each scene, we pre-define specific plausible regions on tabletop surfaces where
objects can be placed. The final placement positions for these objects are then determined using a
grid sampling strategy over these pre-defined areas. This ensures a structured yet varied distribution
of objects, leading to a wide range of interaction possibilities and, consequently, diverse occupancy
data.

To acquire the manipulation capabilities necessary for generating the required occupancy data, we
employ a two-stage process. First, inspired by the initial phase of UniGraspTransformer [107],
we train dedicated policies for individual objects or object categories using reinforcement learning
(RL) with a two-finger parallel jaw grasper. These object-specific policies are optimized to generate
successful grasp trajectories and interact effectively with their designated objects. Second, the
successful interaction trajectories generated by these dedicated policies, encompassing various
objects and initial poses, are collected. These dedicated policies are then directly utilized to perform
the interactions within our simulated environments, and the resulting trajectories provide the basis for
our occupancy data. This approach allows us to systematically generate the rich interaction data from
these specialized policies, which is needed for creating the occupancy grids that condition our ORV
model.

D Additional Experiments

In this section, we first give the detailed introductions of the baselines we compared in our work
(presented in Table 2 and Figure 6). Then we provide additional comparison results and ablation on the
control signals of controllable video generations of ORV. Moreover, we showcase the generalization
ability of ORV, which plays a crucial role in the practical use of our model. After that, we have more
analysis on multiview video generations of ORV.

Baselines. We compare our results with recent works. IRASim [15] is a video diffusion model
employing DiT architecture with action modulation, which outperforms both VDM [108] and
LVDM [109]. HMA [93] models video dynamics via a masked autoregressive transformer tailored
for real-world action sequences. AVID designs a plug-in adapter which can inject action controls to
pretrained video generation models. We also compare with the original text-to-video CogVideoX [14]
model.

D.1 Controllable Video Generation

Figure D: Qualitative Results of ORV with full conditions. Red boxes denote the first frame input of
the video generation; Orange boxes denote the ground-truth of the subsequence frames.

More Comparison with Baselines. In Figure D, we have another example to demonstrate the
superiority of ORV. As highlighted by the red indicators and white boxes, the baseline [15] fails to
correctly infer the physical appearance of the object handled by the robot gripper during the motion.
However, this part of the dynamics is particularly essential to the downstream usage of our generated
videos—such as policy learning, imitation learning. While ORV performs better.
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Figure E: Ablation Results of Depth Condition Map. Without any physical controls, the robot
gripper fails to act accurately aligned with the 3D action instructions, due to the accumulation of
errors. While ours performs correctly, along with the entire sequence.

Figure G: Ablation Results of Semantics Condition Map. Without the guidance of our rendered
semantics maps, the model fails to accurately predict the shape deformation of the knife during its
motion, whereas ours produce outputs that align well with the real-world appearance.

Effect of control signals. We present quantitative comparisons in Table 3 to demonstrate the
improvements enabled by the physical control signals. Furthermore, we highlight this in Figure E.
As shown, without depth guidance, the robot gripper fails to accurately execute the 3D action
instructions—an expected outcome, as 2D pixels are inherently insensitive to depth variations. In
contrast, with the amendment by our rendered depth conditions, this limitation is effectively resolved.
And Figure G shows the qualitative comparison between with and without the semantics condition
maps, where we can see the obvious improvement from this kind of conditions.

Figure F: Improvement curves of PSNR (left) and SSIM (right) metrics across
ordered evaluation samples from BridgeV2 [88].

We further collect the eval-
uation scores across all the
samples and analyze the ef-
fect of guidance on occu-
pancy conditions. Taking
the BridgeV2 data as an ex-
ample, Figure F illustrates
the sample-wise improve-
ment in PSNR and SSIM
metrics after applying the
full condition. We first sort
the evaluation samples based on the scores obtained with the base model, namely only the 3D action
condition (blue curve), and then, following this order, we plot the scores of each sample with the
full condition (orange curve). Additionally, the green line indicates the improvement (%) for each
sample.

D.2 Generalizations

Despite employing SFT to adapt a pretrained CogVideoX model as our base model, ORV retains
strong generalization capabilities, enabling robust performance across diverse scenarios in the robot
manipulation task. Figure H demonstrates our model’s video generations under varying appearances
and arbitrary action control modifications, exhibiting both precise controllability and effective
generalization. Furthermore, ORV also maintain the out-of-domain generalization, namely operating

21



on the in-the-wild observation inputs. However, since ORV takes no texts as the prompt and it relies
on visual clues to infer the state of the robot arms or grippers, it cannot complete a meaningful task
yet.

D.3 Multi-view Videos Generation

Figure H: Appearance & Trajectory Adaptation Re-
sults. Better to zoom in.

Maintaining consistency across different views
in multiview video generation is crucial. Al-
though the model may possess the ability to
infer view orientations from the observations
frame (referred to as ‘context frame’) and pre-
dict how 3D motion control translates into 2D
pixel changes across views, this capability is
inherently limited. Hence, we provide the mul-
tiview conditionings which are consistently ren-
dered from the 3D geometry representations, to
enhance the 2D pixel predictions (as introduced
in Sec. 3.3 and Sec. B).

Figure I shows the comparison of a 3-view video
generation with and without the additional conditioning maps. In this example, although we construct
the 3D occupancy solely from the reference view due to the constraint of data resource, which has
lower quality than a complete 3D geometry, our conditioning maps rendered under the other two side
views help to improve the generation quality to some extent. As highlighted by the white area, during
the motion of the robotic gripper while holding a metal bowl, the bowl undergoes severe deformation
in the current view—even though this issue is entirely absent in the reference view. This is primarily
due to two reasons: first—and most importantly—the current view differs significantly from the
reference view; second, the object has relatively intense motion. With additional guidance from 3D
geometry, all these can be addressed readily.

Figure I: Qualitative Comparison Results of Multiview Videos Generation. With our from-reference-
view rendered visual conditionings, generated videos under side views achieve better geometric
consistency under other side views. Better to zoom in.

E Implementation Details

We provide more details regarding the implementation of our dataset curation, methods and experi-
ments, including all the empirical hyperparameters and settings.
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E.1 Dataset Curation

In the process of dataset-level semantics labelset construction, we employ the VLM (QWen-VL-
Chat [31]) to exhaustively caption all the scenarios in the dataset. Specifically, we use the text
instruction as below:

List the main object classes in the image, with only one word
for each class:

In the process of points-to-occupancy transformation, we adjust the voxel size to get the trade-off
between the computation cost and the granularity of the geometry surface. Specifically, we use a voxel
size of 0.0013 units. The overall spatial extent is set to 0.4× 0.4× 0.4 units for the BridgeV2 dataset,
and 0.4× 0.4× 0.6 units for the Droid and RT-1 datasets. In the process of Gaussian renderings, as
described in Sec. 3.1, we apply a scaling schedule on the size of Gaussian splats, to more accurately
represent the geometric surface. Specifically, we set α = 0.00023, β = 3.7 for the BridgeV2 dataset,
and α = 0.00047, β = 3.2 for Droid and RT-1 datasets.

E.2 Model Architecture Details

Hyperparameters. As mentioned in Sec. 3.2, we use the CogVideoX-2B [14] as our pretrained
backbone, which is a compromise between training from scratch and using the 5B pretrained model
(as TesserAct [19]). And we have already shown its better performance than training from scratch 7
and strong generalization ability in the experiments. We list the main hyperparameters of the model
architecture in Table 5, where ∗ denotes those that are specialized in our model, while others keep the
same as the CogVideoX-2B.

Table 5: Main hyperparameters of model architecture.

Hyperparameter Value

Model
input channels 32∗

attention head dimension 64
number of attention heads 30
number of transformer blocks 30
output channels 16
patch size 2
text embedding dimension 4096
diffusion timestep embedding dimension 512
action embedding dimension 512∗

conditioning dimension 1920∗

positional encoding sin,cos

VAE
spatial compression ratio 8
temporal compression ratio 4

Modulation. CogVideoX [14] uses a design of Expert Adaptive Layernorm: It uses the timestep
t of the diffusion process as the input to the modulation module. Then the Vision Expert Adaptive
Layernorm (Vision Expert AdaLN) and Text Expert Adaptive Layernorm (Text Expert AdaLN) apply
this modulation to the vision hidden states and text hidden states, respectively. Since we adapt the
pretrained parameters from CogVideoX, we strictly keep this architecture. Moreover, to inject our
3D actions control, we reuse the Vision Expert AdaLN (aiming to modulate the vision hidden states)
to apply such modulations from actions while keep the Text Expert AdaLN unchanged:

# self: the instance of the AdaLN method
# self.linear: 1-layer MLP to predict modulation params
# hidden_states: the (noisy) video latents, with shape (B, S, D)
# encoder_hidden_states: the text embeddings, with shape (B, S, D)
# temb: the noise step embeddings, with shape (B, D)
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# action_emb: the action embeddings, with shape (B, S_a, D)

def forward(
self, hidden_states, encoder_hidden_states, temb, action_emb):

// Vision Expert AdaLN (timestep + action)
embedding_dim = hidden_states.shape[-1]
shift, scale, gate = torch.nn.functional.linear(

self.silu(temb[:, None, :] + action_emb),
self.linear.weight[: 3 * embedding_dim],
self.linear.bias[: 3 * embedding_dim],

).chunk(3, dim=-1)

// Text Expert AdaLN (only timestep)
enc_shift, enc_scale, enc_gate = torch.nn.functional.linear(

self.silu(temb),
self.linear.weight[3 * embedding_dim :],
self.linear.bias[3 * embedding_dim :],

).chunk(3, dim=-1)

// Modulate Vision Hidden States
num_patches = hidden_states.size(1) // action_emb.size(1)
scale = scale.repeat_interleave(repeats=num_patches, dim=1)
shift = shift.repeat_interleave(repeats=num_patches, dim=1)
hidden_states = self.norm(hidden_states) * (1 + scale) + shift

// Modulate Text Hidden States
encoder_hidden_states = self.norm(encoder_hidden_states) * \

(1 + enc_scale)[:, None, :] + enc_shift[:, None, :]

...

Multiple visual conditions. To fuse multiple visual conditioning inputs (depth and semantics), we
first concatenate the multiple condition latents along the channel dimension, then repeat the input
noise latents and add them to the condition latents. After that, we reduce the channels back to the
same as the noise latents. As illustrated in Eq. 2, where zin represents the input noise latents.

zin = MLP(zin +Concat([c1, c2, . . . ])) + zin (2)

Positional Encoding. We use the 3D sincos positional encodings in DiT blocks, following the
original CogVideoX-2B. In our multiview videos generation model, similar to the temporal 3D
positional encoding applied on singleview videos, we apply another spatial 3D positional encoding
which is added to the multiview images for each single frame (as Eq. 3). It will enable our model
to learn to operate each view accordingly since the order and the number of the input views during
training is constantly randomized.

PE(t, x, y) = PEt(t)⊕ PEs(x, y) → Frame 3D Full Attention
PE(v, x, y) = PEv(v)⊕ PEs(x, y) → View 3D Full Attention

(3)

3D VAE. The unique design of 3D VAE of CogVideoX requires the input videos to have a length of
8N + 1 where N ≤ 6. To accommodate this requirement, we append an additional single frame to
the end of each sequence, which merely serves as a placeholder (e.g., if we train and test the sequence
length of 16, then we exactly input a 17-frame sequence into the model). It will ensure the model
encodes (decodes) the videos (latents) correctly. Simply, we directly discard the last frame after
the VAE decoding during evaluation. As for the action sequence, to ensure the latent-frame-level
alignment, we also append a subsequent action to the last frame. And to be compatible with the
chunk-level injection (as introduced in Sec. 3.2) where the chunk size is exactly equal to the temporal
compression ratio of 3D VAE, we again pad another (chunk_size− 1) zeros to the last frame. Hence,
the last chunk_size actions actually serve as the placeholders in our model.
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E.3 Training Details

Data process. During training, we sample sequences of frames by first randomly selecting a
video and then uniformly sampling a segment of a specified length and size. Given the various
raw resolutions of videos in different datasets (as introduced in Sec. A), we process them into
a similar resolution setting for stable training. Moreover, the datasets are recorded at different
frequencies (e.g., the robot gripper in BridgeV2 data moves much faster than that in Droid data). To
maintain consistency, we sample the sequences at varied step sizes. Taking into account all these
factors (resolutions, sampling frequencies), we also set different sequence lengths to ensure that
each sequence can ideally capture a complete operation, while controlling the total number of visual
tokens of each sample to be processed by the model. Take the BridgeV2 singleview training as an
example, each individual sample will result in a total ⌈(16 + 1)/4⌉ × (40/2× 60/2) = 3000 tokens.
We list all the details mentioned above in Table 6.

Table 6: Hyperparameters of data preprocessing for training and evaluations.

seq. length raw size sample size latent size step size sample interval

BridgeV2 [88] 16 480×640 320×480 40×60 1 4, 16
Droid [90] 24 180×256 256×384 32×40 3 16, 72
RT-1 [89] 16 256×320 320×480 40×60 2 6, 16

Note that the number of total frames of each individual episode varies significantly across the datasets
(e.g., 20∼50 for BridgeV2 while 50∼4000 for Droid). We then take different sample intervals, i.e.,
the interval between the neighboring sequences within the same episode, for training and evaluation.

Table 7: Distributions of multiview data
samples of BridgeV2 [88].

samples proportion(%)

n_view=1 89901 60.79
n_view=2 0 0.00
n_view=3 57978 39.21

total 147879 100.00

Multiview generations. In our training of the multiview
videos generation model, we control the proportion of
samples with varying numbers of views in the training data
to ensure both effective and robust learning. Specifically,
taking the BridgeV2 [88] dataset as an example, the full set
of training samples generated through sampling contains
a total of 147,879 samples. Among these, 60.79% consist
of only a single view, while 39.21% have three views. To
balance the data, we randomly subsample from the single-
view group to reduce its proportion to around 40%. During training, we randomly sample the number
of views from the sample data. Specifically, we have the probability of 0.5 to sample a 2-view
sequence and another 0.5 to have a 3-view sequence, when the current sample has 3 views.

E.4 Evaluation Details

We evaluate our model across four common metrics: Peak Signal-to-Noise Ratio (PSNR) [110],
Structural Similarity Index Measure (SSIM) [111], Fréchet Inception Distance (FID) [112] and
Fréchet Video Distance (FVD) [113]. All of our evaluations involve the ∼2.6K of generated samples.

E.5 Computation Resources

We implement ORV in PyTorch, using the diffusers2 and transformers3 libraries. Our
models are trained and evaluated on an 8 × H100 cluster. Each experiment utilize 8 GPUs in parallel,
with 16 data loader workers per device. Since we use the similar volume of tokens and size of in
models calculation and size of training samples across different datasets, each single 30K-gradient-
step training costs around 35 hours (∼11.7 GPU days) and evaluating ∼3K samples will cost nearly 2
hours (also parallel in 8 GPUs). Dataset curation particularly cost much disk space, e.g., all generated
data for BridgeV2 [88] in our experiments occupies about 8TB of disk space.

2https://github.com/huggingface/diffusers under Apache License
3https://github.com/huggingface/transformers under Apache License
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F Additional Qualitative Results

In this section, we provide more uncurated singleview examples generated by ORV, as shown in
Figure J, K, L. For each episode, we present their ground-truths in the top row and our results in the
bottom row, respectively. For a better view and other more examples, please refer to our webpage.

G Limitations and Future Work

Although we have achieved promising results in , it remains a challenging task with many unsolved
problems, and our method is limited in some aspects. This section provides a detailed discussion of
the limitations and outlines potential future directions.

(1) In our work, although our 3D occupancy provides geometry representation for all objects in the
scene, the 3D action signal only describes the end-effector pose of the robotic arm. This description
is insufficient for arms with more complex articulated joints—such as the Google robot used in the
Droid [90] dataset. Incorporating precise motion descriptions of all the joints would yield a more
accurate representation of the arm’s trajectory.

(2) Our current ORV-MV requires the inputs of first-frame observations from multiple views. By
leveraging geometric constraints from the 3D occupancy and the robotic arm pose observed in the
initial frames, ORV-MV is able to generate view-consistent videos. In the future, we plan to include
the generation of multi-view first-frame images within this framework—i.e., generating consistent
multiview videos from only a singleview first-frame input. This enhancement would significantly
improve the usability and practicality of ORV-MV.

H Social Impact

This work advances the field of controllable robot video generation, which has broad potential
applications in areas such as robotics simulation, education, virtual reality, and creative media
production. However, we recognize the dual-use nature of generative video models, particularly the
risk of misuse in creating misleading or deceptive content (e.g., deepfakes) that could contribute to
misinformation or privacy violations. To mitigate these concerns, our research is conducted under a
responsible AI framework: we use publicly available, ethically sourced datasets, and our models are
intended strictly for academic research. We encourage future work to incorporate safeguards such as
provenance tracking and synthetic content detection alongside model development, ensuring that the
societal benefits of generative technologies are realized while minimizing their potential harms.
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Figure J: Additional Qualitative Results of ORV #1.
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Figure K: Additional Qualitative Results of ORV #2.
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Figure L: Additional Qualitative Results of ORV #3.
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