
Long-term Traffic Simulation with
Interleaved Autoregressive Motion and Scenario Generation

Xiuyu Yang* Shuhan Tan* Philipp Krähenbühl
UT Austin

t = 1s t = 9s t = 16s t = 24s t = 30s

In
fG
en

P
ri
or
 W
or
k
[2
4
]

Ego agent Initially placed agents Dynamically generated agents

Figure 1. Long-term traffic simulation with InfGen and prior SOTA [31]. InfGen keeps scene layout realistic while [31] becomes empty.

Abstract

An ideal traffic simulator replicates the realistic long-
term point-to-point trip that a self-driving system experi-
ences during deployment. Prior models and benchmarks
focus on closed-loop motion simulation for initial agents
in a scene. This is problematic for long-term simula-
tion. Agents enter and exit the scene as the ego vehicle
enters new regions. We propose InfGen, a unified next-
token prediction model that performs interleaved closed-
loop motion simulation and scene generation. InfGen au-
tomatically switches between closed-loop motion simula-
tion and scene generation mode. It enables stable long-term
rollout simulation. InfGen performs at the state-of-the-
art in short-term (9s) traffic simulation, and significantly
outperforms all other methods in long-term (30s) simula-
tion. The code and model of InfGen will be released at
https://orangesodahub.github.io/InfGen.

1. Introduction
Traffic simulation is a cornerstone of the extensive and safe
development of self-driving systems. The ultimate goal of
traffic simulation is to create realistic trip-level driving ex-
periences that faithfully reflect real-world self-driving con-

*Equal contribution. Work done while Xiuyu interned at UT Austin.

ditions [1, 7, 9, 13, 30]. A simulator should provide a re-
alistic model of the environment, the ego-vehicle, and all
other traffic agents throughout the trip. Existing simulators
easily handle an expansive static environment [1, 9, 30] and
intricate ego-vehicle dynamics [7, 13]. However, they often
lack a stable long-term simulation of non-ego traffic agents.

In this paper, we introduce InfGen, a long-term traffic
simulator: Given a short (1 second) driving-log, InfGen
simulates realistic traffic flow around the ego agent for up to
30 seconds. This long-term setting leads to new challenges.
The ego agent may move outside its initial simulation area,
leading to logged agents moving out of sight and becoming
irrelevant. Furthermore, when the ego agents drive into new
map area not covered in the log, these street areas have no
agents. Gradually, a scenario becomes sparser and eventu-
ally empty (Fig. 1 bottom row). This is clearly unrealistic.
InfGen models this by combining closed-loop motion sim-
ulation with scene generation to remove exiting agents and
spawn new agents according to the spatial scene layout.

InfGen (Fig. 2) is a unified autoregressive transformer
with interleaved token prediction. It handles temporal mo-
tion simulation and spatial scene generation in a unified
model. We design a set of tokenizers to convert task-specific
behaviors of motion simulation and scenario generation into
discrete tokens. We then add mode-control tokens to mark

1

https://orangesodahub.github.io/InfGen

Autoregressive Language Model

Position Heading Position
BEGIN

MOTION
ADD 

AGENT
Initial

Prompt

Position Heading Position
BEGIN

MOTION

ADD 
AGENT

BEGIN
MOTION

Heading

Heading

Spatial Scene GenerationTemporal Motion Simulation

 Scenario
Tokenizer

Map Agent

 Agent Motion
Tokenizer

 Agent Pose
Tokenizer

 Agent Pose
Tokenizer

New Agent A

Position Heading

New Agent B

Position Heading

Initialization Agent Trajectory

Figure 2. Overview of InfGen interleaved next-token-prediction
process. Colors mark different token modalities.

the task switch between the two tasks, indicating what the
current task is and when to switch. This design allows us to
convert each real log into a single ordered sequence of to-
kens containing interleaved data of both tasks. We directly
train InfGen with the next token prediction objective end-
to-end on real data. Noticeably, thanks to the next token
prediction formulation, we can train InfGen on short-term
driving logs and produce stable long-term rollouts, up to
6× longer than the training horizon (Fig. 1 top). We show a
detailed pipeline of InfGen in Fig. 3.

We show in Section 5 that InfGen significantly outper-
forms prior SOTA models [31, 41] in 30-second long-term
traffic simulation for in terms of both motion and scenario
realism, showing its strong capacity for stable long-horizon
rollout. We contrast different models’ rollout with visu-
alizations (Fig. 5). Furthermore, InfGen achieves strong
performance even on the standard short-term Sim Agent
setting [14], showing its strong adaptivity to different roll-
out horizons. In addition, we provide a comprehensive set
of analysis on the long-term traffic simulation task to shed
light on research towards trip-level driving simulators.

2. Related Work

Closed-loop Motion Simulation. In traffic simulators,
motion simulation aims to model realistic multi-agent inter-
actions that mimic real-world data. Early works like Way-
former [15] focus on open-loop imitation learning from real
logs [20, 36, 38, 40, 43]. Other works like ProSim [25]
and CAT-K [41] instead focus on modeling closed-loop
interaction between agents [2, 22, 39]. CtRL-Sim [18]
learns reactive agents by applying offline reinforcement
learning to diverse traffic scenarios. More recent works
like SMART [31] discover the effectiveness of modeling
this task as an autoregressive next-token-prediction prob-
lem [11, 16, 21, 42, 46]. ProSim [25] enables multimodal
prompts to control behavior semantics of any agent. Most

recently, GIGAFLOW [7] shows strong agent performance
emerges from large-scale self-play in simulation. For this
direction, nuPlan [1] and WOSAC [14] provide data and
benchmark for fair comparisons. All these works focus on
simulating motions of agents existed in the history, lead-
ing to unrealistic scene layouts under long-term rollout.
InfGen solves this issue with interleaved scene generation,
maintaining realistic scene layout across the rollout horizon.

Traffic Scenario Generation. This line of work fo-
cuses on generation realistic and interesting traffic scenar-
ios. Early works like SceneGen [23] and TrafficGen [10]
generates agent initial poses on an empty map. Another
popular direction is to generate near-collision scenarios
with adversarial optimization [4, 17, 29, 33, 35]. More
recent works like LCTGen [24] enables better customiza-
tions of the generated scenarios in forms of text [24, 44],
scenario queries [8] or cost functions [45]. SLEDGE [6]
combine generative models with rule-based traffic simula-
tion to synthesize dynamic driving scenarios. These works
either focus on static scene layout initialization, or only gen-
erate short-term open-loop scenarios. In contract, InfGen
conducts dynamic scenario layout generation during closed-
loop rollout, enabling stable long-term simulation. Con-
current works like SceneDiffuser++ [27] and Scenario-
Dreamer [19] introduces a vectorized latent diffusion ap-
proach to generate realistic and diverse driving simulation
environments.

Interleaved Next-Token Prediction. Recent advances
in vision-language models have sparked works that unify
generation and understanding tasks with interleaved mixed-
modal token sequences. For example, Chameleon [3] pro-
poses to train LLMs on interleaved text and image tokens
in any arbitrary sequences. This line of works show strong
performance on traditional multimodal tasks, but also long-
form mixed modal generation that interleaves between im-
age and text generation [3, 12, 28, 32, 37]. InfGen follows
the same philosophy but focus on a different pair of modal-
ities: temporal agent motion and spatial agent layout.

3. Problem Formulation

The goal of traditional traffic simulation [14] is to predict
future agent trajectories given historical observations (with
time span TH) and a static map. Specifically, at timestep
t0, we are given the static map M and the history states
of all the agents A0:t0 = {a10:t0 , a

2
0:t0 , . . . , a

N
0:t0}, where

each agent ai has history states up to timestep t0. The stan-
dard task is to predict future agent states over a fixed hori-
zon T , formulated as estimating the conditional distribu-
tion: p(At0+1:T | M,A0:t0). Prior work [25, 31] factorize
the simulation on the time axis and turn it to an autoregres-

2

K, V K, V
Motion
Query

Agent
Query

REMOVE
AGENT

K, V K, V

Timestep

A
g

en
t I

nd
ex Te

mp
or

al
 A

tt
n

Ag
en

t-
Ag

en
t

At
tn

Ma
p-

Ag
en

t
At

tn

K, V

Motion

Head

Control Head

Occupancy

Grid

Map Tokens

Gr
id

 A
tn

Pose

Head

Control Head

Co
mb

in
e

Co
mb

in
e

REMOVE 
AGENT

BEGIN 
MOTION

Lo
ng

-t
er

m
Ro

ll
ou

t

Pose Token

Motion Token

Control Token

Empty Token

Figure 3. Pipeline of InfGen interleaved motion simulation (blue flow) and scene generation (green flow). For either task, we first pass its
query feature through blocks of attention layers and feed it to a task-specific head and a control head. We then sample from both heads to
obtain a motion token or pose token, as well as a control token, which determines determines which task to execute next.

sive prediction task:

p(At0+1:T | M,A0:t0) =

T−1∏
t=t0

p(At+1 | M,A0:t). (1)

However, this formulation assumes a fixed set of agents
throughout the prediction horizon, which does not hold true
for long-term simulations with the horizon T ′(≫ T). In re-
alistic scenarios (e.g., [14]), agents dynamically enter and
leave the observable region around the ego vehicle. To ad-
dress this issue, we model two interleaved processes at each
timestep: 1) motion simulation: predicts future motions for
existing agents; 2) scene generation: dynamically insert-
ing new agents and removing agents exiting the scenario.
At each timestep t, we first performs motion simulation:
At+1 ∼ pmotion(At+1 | M,A′0:t), followed by scene gener-
ation: A′t+1 ∼ pscene(A′t+1 | M,At+1). Here, At+1 con-
tains the predicted motions of existing agents, while A′t+1

represents the updated set of agents after adding new agents
and removing exiting agents. Then, we formulate the long-
term traffic simulation task as:

p(A′t+1:T ′ | M,A0:t0) =

T ′−1∏
t=t0

pscene(A′t+1 | M,At+1)×

pmotion(At+1 | M,A′0:t).
(2)

4. InfGen
InfGen is a unified autoregressive model for long-term traf-
fic simulation. Regarding the inputs, it first tokenizes all
scene context information (M and A0:t0) into sequences of
discrete tokens, see Sec. 4.1. It then uses an autoregressive
model for interleaved next-token prediction, see Sec. 4.2.
And Secs. 4.3 and 4.4 provide the details on the model ar-
chitecture and training process of InfGen.

4.1. Tokenization
We aim to convert all agent motions, layouts and the map in
a real log into a sequence of discrete tokens. We tokenize
each modality differently.

Map Tokenizer. We adapt the map tokenizer from [31]:
we uniformly segment all the road elements into a set of
fixed-length road vectors. Each vector contains the corre-
sponding features, including start/end points, directions and
road type. We collect all road vectors to the map token set
Vmap.

Agent Motion Tokenizer. We follow the motion tokenizer
from prior works [31, 41].1 Specifically, we segment the
continuous trajectories of all agents in the dataset with a
fixed time span of 0.5 seconds. Then we use k-disks algo-
rithm [31] to cluster these trajectories into the set of motion
vocabulary Vmotion. Finally, at every 0.5-second interval, we
convert the continuous trajectory into a discrete token with
the index of its nearest neighbor in the motion vocabulary.

Agent Pose Tokenizer. When a new agent is inserted into
the scenario, its initial pose (position and heading) is given.
We tokenize the pose of each inserted agent as a pair of dis-
cretized position and heading tokens. For position, we con-
struct a grid with a radius of R, centered on the ego agent’s
location with x-axis aligned with ego agent’s heading, re-
sulting in position token set Vpos. To get the position token,
we obtain the index of the grid closest to the agent based
on L2 distance. For heading, we divide the 360◦ range at
the interval of ∆θ, resulting in heading token set Vhead. To
get the heading token, we similarly obtain the index of the
heading interval closest to the agent heading. For simplic-
ity, we refer the pair of position and heading tokens as a
pose token.

1Please refer to [31] for the details of motion tokenizer and k-disks
approach.

3

Mode Control Tokenizer. We model long-term traffic
simulation as interleaved motion simulation and scenario
generation. We design the control tokens Vcontrol, consists
of 4 special tokens, to mark mode transition between tasks:
1) <BEGIN MOTION>: the next token is an agent motion to-
ken to simulate current existing agents; 2) <ADD AGENT>: the
next token is an agent pose token to insert a new agent; 3)
<KEEP AGENT>: the current agent is kept in the scenario; 4)
<REMOVE AGENT>: the current agent will be removed in the
next timestep. In the next section we will show how to use
Vcontrol to control the interleaved simulation process.

Tokenizing a real log into a discrete token sequence al-
lows us to convert the complex mixture-task simulation pro-
cess into a simple interleaved next token prediction task.

4.2. Interleaved Next Token Prediction

Dynamic Agent Matrix. Traffic simulation can be repre-
sented by an agent matrix shown in Figure 3. The horizon-
tal axis represent temporal lifecycle of each agent: being
inserted, active moving and finally exit the scenario. The
length of the temporal axis equals to the rollout horizon.
On the other hand, the vertical axis represent spatial agent
layout at each timestep, where the width represent the num-
ber of active agents at each step. When a new agent is in-
serted, a new row is created and append to the matrix. Con-
versely, when a current agent gets removed, its row gets
deleted from the matrix. For long-term scenarios, because
agents are frequently being inserted and removed from the
scenario, the number of rows of the matrix are also con-
stantly changing. Hence, we term it the dynamic agent ma-
trix.

As shown in Figure 3, we represent the long-term traf-
fic simulation task as extending the dynamic agent matrix
on different axis. Motion simulation (the upper blue flow)
extends the temporal axis by adding new columns with pre-
dicted motion tokens. In contrast, scenario generation (the
lower green flow) extends the spatial axis by adding new
rows with pose tokens of new agents, and removing current
rows of exiting agents. The control tokens determine how
to interleave these two processes.

Temporal Motion Simulation. We show this process in
the blue flow of Figure 3. For the ith active agent at timestep
t, we use its current motion token mt

i as the query qmt
i

to
obtain its motion feature fm

2. Specifically, we input qm to
a Temporal Attention layer to attend to the key and value of
all its own past motion tokens within tw timesteps (within
the same row as the query token):

q′mt = MHSAt(qmt , {kmt−τ }tw
τ=1, {vmt−τ }tw

τ=1). (3)

The output is then sent to an Agent-Agent Attention layer to
2We omit the t and i in this section when possible for simplicity.

attend to all the other N t active agents within a valid range
ra↔a at the same timestep t:

q′′mi
= MHCAa↔a(q′mi

, {kmj
}N

t

j=1, {vmj
}N

t

j=1). (4)

Finally, the query goes through a Map-Agent Attention
layer to attend to the Nr precomputed map tokens within
a valid range rm↔a:

fmi
= MHCAm↔a(q′′mi

, {kmj
}Nr
j=1, {vmj

}Nr
j=1). (5)

The motion head and control head separately take fm
and output the probabilities over the motion and control to-
kens, from which we sample a motion token and a control
token for each active agent. In this subtask, we enforce
the control token to be sampled from <KEEP AGENT> and
<REMOVE AGENT>. If control token is <KEEP AGENT>, we add
the sampled motion tokens to the next column of each agent.
Otherwise, if the control token is <REMOVE AGENT>, we add
this control token to the next column and discard the motion
token. The above process is conducted for all the current ac-
tive agents in parallel in training and inference. After this,
we switch to the scene generation step.

Spatial Scene Generation. We show this process in the
green flow of Figure 3. After each motion simulation step,
we use a learnable agent query a0 to obtain the scene gen-
eration feature fa0

. Same as the motion query, the agent
query is also sent through three attention layers to collect
the context information. The latter two layers are the same
as the motion query, while the Temporal Attention layer is
replaced by a Grid Attention layer. This layer allows the
agent query to attend to the occupancy grid tokens g of total
size Ng = Np = |Vpos| derived from the position tokens:

q′a0
= MHCAg(qa0

,Γ({kgj}
Ng
j=1),Γ({vgj}

Ng
j=1)), (6)

where Γ(·) presents the transformation preceding the atten-
tion calculation for efficiency. We then pass q′a0

through
the other two layers (Eq. 4 and Eq. 5) to produce fa0 . Dif-
ferently, q′a0

will have various visible range for the active
agents rq←a at current timestep and for the map tokens
rq←m, please refer to Appendix B for more details.

Then the pose head and control head take fa0
and out-

put distributions for pose and control tokens respectively,
from which we sample a pose token and a control token for
each generation step (Please refer to Appendix B for more
details). We enforce the control token to be sampled from
<ADD AGENT> and <BEGIN MOTION> for this subtask. Con-
trolled by <ADD AGENT>, we append a new row to the agent
matrix and assign the sampled pose token to the current
timestep. Then, conditioned on the all active agents, in-
cluding the newly inserted one, we repeat the above step
to autoregressively insert another new agents. This pro-
cess is terminated when the sampled control token is <BEGIN

4

MOTION>. In this case, we end the scene generation process
and move to motion simulation of the next timestep. Fi-
nally, we remove any row that has a <REMOVE AGENT> token
at the current timestep from the agent matrix.

4.3. Model Architecture

Token Embedding. Our model takes tokens of different
modalities. To model them with a single token sequence,
we take different MLP layers to embed different kinds of
tokens into the same latent dimension D before entering the
model. Please refer to Appendix B for more details.

Modeling Layer. Our transformer model is composed of
L blocks of attention layers. As mentioned in Section 4.2,
each block contains 4 attention layers: Temporal Attention,
Agent-Agent Attention, Map-Agent Attention and Grid At-
tention. Here the first layer are implemented with multi-
head self attention layer (MHSA), while the other layers are
multi-head cross attention layer (MHCA). Furthermore, we
apply the position-aware attention from prior works [25, 31]
to explicitly model the relative positions between tokens.
Please refer to the Appendix for the details.

Occupancy Grid Encoder. We obtain occupancy grid
features fg of the current scenario with the agent position
tokens and map tokens via Γ(·). Specifically, given the vo-
cabulary size Np of position tokens Vpos, we directly assign
each token with occupation indication {0, 1}, leading to an
agents occupancy grid g1×Np ∈ {0, 1}. We utilize the oc-
cupancy maps of agents in decoding pose token process, to
make the agent query efficiently infer the spatial distribu-
tions of agents. We use an MLP Layer to convert g1×Np to
its features fNp×D

g before feed it into Grid Attention layers.

4.4. Training

Ground-truth Sequence. As described in Section 3, real-
world traffic scenario log [14] naturally contains data of
agent motion, insertion and removal behaviors. To train our
model with the interleaved NTP problem explained in Sec-
tion 4.2, we convert each ground-truth log into an ordered
sequence of token labels. To this end, we enforce a specific
ordering to chain tokens from different modalities. Specifi-
cally, at each timestep we arrange each type of tokens with a
fixed order: 1) motion tokens from all the current agents; 2)
control tokens <REMOVE AGENT> and <KEEP AGENT> for the
current agents; 3) pose tokens and <ADD AGENT> for any in-
serted agents; 4) <BEGIN MOTION> that mark the transition
to the next timestep. For the same type of tokens we or-
der them following to the agent’s distance to the ego agent
from near to far. With this rule we obtain a sequence of
ground-truth (GT) token labels from each real log to train
our model. Please refer to Appendix C for more details
about the GT tokens.

Table 1. Short-term traffic simulation in WOSAC [14] (↑).

Method Composite Kinematic Interactive Map

TrafficBots [40] 0.6976 0.3994 0.7103 0.8342
GUMP [11] 0.7404 0.4773 0.7872 0.8339
SMART-7M [31] 0.7521 0.4799 0.8048 0.8573
CatK [41] 0.7603 0.4611 0.8103 0.8732
InfGen 0.7514 0.4754 0.7936 0.8502

Learning Objective. As shown in Figure 2, given the GT
input tokens as input, our model predicts the distributions of
different kinds of tokens at the corresponding position. We
then train our model with a set of standard NTP objective
for each type of tokens. For example, the loss function for
the motion token is:

Lmotion = −
T−1∑
t=1

log pθ(m
t+1
i | c1:t), (7)

where T is the total number of timesteps, mt+1
i is the GT

motion token in the next timestep, pθ(m
t+1
i |c1:t) is the

model-predicted probability of the GT token. Here, c1:t is
the ensemble of all history context the model attends to,
including history motions of the same agent, positions of
other agents in the current timestep, and the map. We for-
mulate the loss function in the same way for agent pose to-
kens Lpose and mode control tokens Lcontrol. We also have
supervision of shapes and types for those new agents. Our
total training loss can be written as:

L = λ1Lmotion + Lpose + λ4Lcontrol + Lattr, (8)

where Lpose = λ2Lpos + λ3Lhead and Lattr = λ5Lshape +
λ6Ltype. We directly end-to-end train InfGen with L on
the fully tokenized dataset. During training InfGen not
only learns how to conduct the two tasks respectively, but
also learns to automatically and seamlessly switch between
them. Please refer to Appendix D for more training expla-
nations.

5. Experiments
In this section, we validate our work from two aspects:
1) How does InfGen compare to the SOTA baselines on
conventional short-term traffic simulation task in standard
benchmarks? 2) How does InfGen perform on our mainly
introduced long-term traffic simulation task?

Dataset. We train and validate InfGen on Waymo Open
Motion Dataset (WOMD) [9], with ∼ 480K scenarios for
training and ∼ 44K scenarios for validation. Each scenario
consists of a T = 9.1 s recorded rollout, with the first TH =
1.1 s historical frames and the subsequent 8 s future frames.

Training. To train InfGen, we use a total batch size of
8 on 8 NVIDIA A5000 GPUs with the AdamW optimizer

5

Table 2. Long-term traffic simulation evaluation (↑) on WOMD validation split measured by the metrics introduced in Sec. 5.2.

Method Composite Kinematic Interactive Map-based Placement-based
overall N+ N− D+ D−

SMART-7M [31] 0.6519 0.5839 0.7542 0.8102 0.4324 0.5713 0.4964 0.3371 0.3248
CatK [41] 0.6584 0.5850 0.7584 0.8186 0.4424 0.5842 0.5233 0.3371 0.3248
InfGen 0.6606 0.5966 0.7619 0.8087 0.4542 0.6273 0.5635 0.3169 0.3092

and cosine annealing learning rate scheduler. The initial
learning rate is 0.0005. For the loss function in Eq. 8, we
set λ1 = λ3 = 1, λ2 = λ4 = 10, λ5 = 0.2, λ6 = 5.

5.1. WOMD Sim Agent Challenge

We first evaluate InfGen on the standard short-term traf-
fic simulation task in WOSAC [14]. For this setting, we
enforce InfGen to skip all the scene generation steps, and
predict the rollout for only 8s. We then evaluate the roll-
outs under the official WOSAC metrics and compare the
results with the top-performing methods in Table. 1. The
results show InfGen performs very competitive even un-
der the short-term setting without any task-specific tuning,
achieving similar performance to SOTA [41] and outper-
forms strong models [11, 40].

5.2. Long-term Traffic Simulation Setup

Rollout Setup. To be compatible with the map size of
WOMD, we set the total rollout duration of our long-term
traffic simulation experiments as T ′ = 31.1 s with FPS =
10. The first 1.1 s corresponds to the historical segment,
from which we simulate 300 future steps.

WOSAC Metric Adaption. The standard WOSAC met-
ric [14] evaluates short-term traffic simulation by compar-
ing simulated rollouts directly with ground-truth (GT) logs
over an 8-second horizon. Specifically, it computes 9 met-
rics that assess aspects such as kinematic realism, interac-
tion realism, and map adherence, assuming a one-to-one
correspondence between simulated and logged agents.

However, in our long-term simulation setting, the rollout
duration extends significantly beyond the standard 8-second
window, reaching up to 30 seconds. This creates two critical
challenges: (1) there is no direct one-to-one correspondence
between simulated agents and logged agents over the entire
long-term rollout, as agents dynamically enter and exit the
scene; (2) the evaluation window (8 seconds in WOSAC)
is shorter than our simulation horizon (30 seconds). There-
fore, we need to adapt the original WOSAC metric to suit
our long-term simulation setting.

Specifically, we adapt the WOSAC evaluation as fol-
lows. Given a long-term simulated rollout σ′ =
(M,A′0 :T ′), we extract short segments using a sliding
window approach. Specifically, we slide a window of

Figure 4. Agent Count Error (ACE) curves of InfGen against
baselines over 30s long-term simulation rollouts.

length Tw = T − TH (matching the standard 8 s evalu-
ation window) at a fixed interval ∆t throughout the en-
tire simulated rollout. Each sliding window generates a
short-term segment A′t : t+Tw

that matches the length of
standard evaluation segments. Finally, we get A′0:T ′ =
{A′∆s(i−1) :∆s(i−1)+Tw

}Pi=1 with the number of segments
equal to P , and ∆s(P − 1) + Tw = T ′.

Since the number of simulated agents N ′ in these seg-
ments may differ from the logged agents N , we cannot
directly apply the original WOSAC evaluation. Instead,
we compute agent-level Negative Log-Likelihood (NLL)
scores for all simulated agents by evaluating their behaviors
against a global distribution learned from the entire vali-
dation dataset (∼ 48K scenarios). Concretely, we first esti-
mate empirical distributions for agent motions, interactions,
and placements from the entire validation dataset, and then
measure how well our simulated agent behaviors conform
to these reference distributions. This modified approach
ensures a fair and consistent evaluation of long-term sim-
ulation realism with varying numbers of agents and rollout
durations.

Placement-based Metrics. The standard WOSAC met-
rics evaluate simulation realism through multiple compo-
nents: kinematic-based, interaction-based, and map-based.
These metrics are then aggregated into an overall realism
composite metric using predefined weights. However, these
metrics assume a fixed set of agents throughout the evalu-
ation horizon and thus fail to capture the realism of agent
insertion and removal events that are essential in long-term
traffic simulations. We then propose the placement-based
component, which comprises 4 types of statistics: the num-

6

Table 3. Ablation study of InfGen on long-term traffic simulation (↑). ✓ indicates remaining unchanged as in Table. 2.

Cont. token Pos. token Head. token Composite Kinematic Interactive Map-based Placement-based

✓ ✓ 0.6328 0.5493 0.7043 0.7961 0.4513*

✓ ✓ 0.6564 0.5580 0.7768 0.8077 0.4378
✓ ✓ 0.6509 0.5866 0.7276 0.8107 0.4445

✓ 0.6297 0.5422 0.6962 0.7939 0.4499
✓ ✓ ✓ 0.6674 0.5921 0.7688 0.8003 0.4503

* We take the heuristic approach to remove the agents.

Table 4. Long-term motion prediction evaluation (↑).

Method Composite Kinematic Interactive Map

SMART-7M [31] 0.7428 0.5413 0.7626 0.8349
CatK [41] 0.7316 0.5216 0.7347 0.8495
InfGen 0.7432 0.5495 0.7685 0.8213

ber of placement N+, the number of removal N−, the dis-
tance of placement D+ and the distance of removal D−,
where the distances here are relative to the ego agent. We
aim to use the placement-based metrics to assess the real-
ism of InfGen in modeling the entry and exit of agents dur-
ing the long-term rollout. Similarly, we calculate the NLLs
of the placement-based statistics under the logged distribu-
tions in the same way as the other components.

Agent Count Error Metrics. In addition to WOSAC met-
rics extensions, we also introduce a new Agent Count Error
(ACE) metric to evaluate scene realism during long-horizon
rollouts. For each sliding window over the 30 s rollout, we
compute the mean absolute difference in agent count be-
tween simulation and the ground-truth distribution of the
validation set. We summarize the results with two scalar
metrics (lower is better): Mean ACE (overall error) and ACE
Slope (error growth rate via linear regression).

With the above setup we are now ready to evaluate dif-
ferent methods for long-term traffic simulation.

5.3. Long-term Traffic Simulation Evaluation

Baselines. Since existing works do not focus on long-term
rollout, to fairly compare, our baselines are derived by im-
proving upon the SOTA simulation methods SMART [31]
and CatK [41]. SMART leverages vectorized map and
agent trajectory data, predicting motion sequences through
a decoder-only transformer architecture. CatK further in-
troduces a closed-loop supervised fine-tuning technique and
achieve better WOSAC simulation performance.

First, we extend their rollout duration to T ′ = 31.1s
and then calculate the kinematic, interactive and map-based
metrics. For the placement-based metrics, we design a
heuristic approach: we obtain the entered and exited agents
by partitioning the distance between agents and the ego

agent by the radius R, which corresponds to the distance
placement and distance removal of placement-based mea-
surements, introduced in Sec. 5.2. During the rollout pro-
cess, we have the distances from each agent to the ego agent
{D i

0 :T ′}Ni=1. At step t, the agents that first run within the
range R, whose Dt ≤ R given D0 : t−1 > R, are consid-
ered as entered agents, while those agents withDt > R and
D0 : t−1 ≤ R, are considered as exited agents. Through-
out the experiment, we adjust R to achieve the highest
placement-based score for baselines on validation set. In
this case, we assign additional validity values to each agent
at each timestep, thus only those valid agents will be in-
cluded in baseline inferences and evaluation metrics. We
follow the default settings in their papers.

Quantitative Results. Under the settings and proposed
evaluation metrics in Sec. 5.2, Table. 2 shows the results
of long-term traffic simulation under extended WOSAC
metrics. As can be seen, InfGen achieves better realism
performance than baselines. For placement-based metrics,
our method significantly outperforms the baselines, demon-
strating that our approach effectively models the spatial se-
quences of agents. The lower scores on map-based metrics
may be attributed to the insertion of agents in regions out-
side driving lanes or near road boundaries, leading to less
realistic motion trajectories.

Figure 4 shows the curve of comparison results under our
introduced ACE metrics, where our method significantly
outperforms prior methods: InfGen achieves Mean ACE of
8.1 while baselines (CatK [41],SMART [31]) have scores
of 12.2 and 12.0, which reflects the improvements of our
dynamically scenario generation; InfGen has ACE Slope:
0.15, however, baselines accumulate such errors with slopes
of 0.32 and 0.31. This significantly confirms the much bet-
ter long-term stability observed in Figure 5.

Qualitative Analysis. We further show InfGen through
the visualizations of the long-term rollouts. As depicted
in Figure. 5, the results highlight two core properties of
InfGen: long-term and closed-loop. The first scenario
depicts a bidirectional driving road, where InfGen suc-
cessfully simulates oncoming traffic. In the third scenario,
when the rollout reaches t = 18s, most of active agents

7

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

O
ur

s
SM

A
R

T
t = 1s t = 6s t = 12s t = 18s t = 24s t = 30s

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

Figure 5. Qualitative results of long-term closed-loop rollouts for 5 scenarios. We compare rollouts of InfGen and SMART [31] here.
are the initially placed agents, are the new agents inserted by InfGen, and are the ego agents.

8

run outside the scenario, resulting in an empty region, as
reflected by prior works. Under the control of InfGen,
new agents enter the scenario, allowing continued agent-
agent and agent-map interactions with high realism. While
in baselines, those regions around the ego agent remains
empty. Moreover, from the forth scenario, we observe our
model can place new agents not only on driving roads but
also in parking lots or other open areas.

Motion-only Analysis. In Section 3 we formulate the
long-term traffic simulation task as a product of motion sim-
ulation and scene generation (Equation 2). Here we investi-
gate the performance of different models in long-term traf-
fic simulation when we only consider motion simulation.
Specifically, we disable agent insertion and removal for all
the methods, and simply let them rollout for 30 seconds. We
then evaluate the rollouts with the adapted WOSAC metrics.
As shown in Table 4, all the compared methods have very
similar performance. This indicate that simply extending
rollout horizon will not reveal important aspects of long-
term traffic simulation, like the empty scenarios we see for
SMART rollouts in Figure 5.

5.4. Ablation Study
We conduct various ablation studies to validate our meth-
ods. We ablate the impact of designed control tokens, posi-
tion tokens and heading tokens on our task. Due to the high
cost of local evaluation, following [41], we use 5% (2204
out of ∼44K scenarios) of the validation split in this part.

Effect of Control Token. As discussed in Sec.4.1, we
introduce the control tokens to determine the spatial scene
generation sequence. The baselines, to some extent, can be
regarded as versions without the <ADD AGENT> token, and
naturally, the <REMOVE AGENT> token is also absent. To fully
validate the control tokens, we additionally conduct long-
term rollout tests while retaining the <ADD AGENT> token but
removing the <REMOVE AGENT> token.

Note that we use the heuristic approach to remove agents
with distances exceed the R, for two reasons: 1) Adding
agents without removing any results in an unrealistic sce-
nario that would not naturally exist; and 2) to ensure a
fairer comparison. As shown in Table 3, removing <REMOVE

AGENT> token in long-term rollout severely degrades the
kinematic and interactive metrics. Unsurprisingly, as the
continuously increasing number of agents over time signifi-
cantly impacts bother their motion states and internal inter-
actions.

Effect of Position Token. We take position tokens to ef-
ficiently capture the environment information of local re-
gions, which are ultimately aggregated into the agent query
in spatial scene generation. We have an ablation experiment
by completely removing the position tokens along with its
token embedding, and we instead directly predict the (x, y)

locations of agents. The results reveal that the position to-
kens help the model better address the placement-related
issues, as grids simplify the search space. Additionally,
through position tokens embedding, the agent query can
more efficiently perceive the spatial distribution of the en-
vironment.

Effect of Heading Token. The initialization of newly-
entered agents’ poses, is essential to the their subsequent
motions and further the interactions with others. Similarly,
we validate replacing the head token prediction with the di-
rect prediction of continuous angle values. The results at ta-
ble. 3 also reflects that heading tokens can slightly improve
the interactive and placement-based performance.

6. Conclusion
In this work we propose InfGen, a unified next-token pre-
diction model for long-term traffic simulation. InfGen
learns to automatically switch between temporal motion
simulation and spatial scene generation. Our experiments
show InfGen significantly outperforms prior methods in
long-term simulation, while keeping strong performance on
standard short-term simulation. We believe InfGen is a
steady step towards realistic trip-level traffic simulation.

Limitations and Future Works. The main limitation of
this paper is that we did not evaluate InfGen under a real
trip-level rollout duration (> 5 minutes). Our main con-
straint is the map areas available in WOSAC scenarios are
too small: even in our 30s rollout the ego agent often drive
to areas where no map is available. We plan to further ex-
plore with suitable data. Another limitation is that InfGen
is trained purely with supervised learning on logged real-
world data, which may lead to failures due to overfitting and
the model capturing spurious causal relationships. Given
the interactive nature of this task and its autoregressive gen-
eration process, in future work we plan to explore inter-
active reinforcement learning to further encourage realistic
agent interactions and scenario generation through environ-
ment feedback [5, 26].

References
[1] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit

Fong, Eric M Wolff, Alex H Lang, Luke Fletcher, Oscar
Beijbom, and Sammy Omari. nuplan: A closed-loop ml-
based planning benchmark for autonomous vehicles. arXiv
preprint arXiv:2106.11810, 2021. 1, 2

[2] Sergio Casas, Cole Gulino, Shuai Suo, Katie Luo, Renjie
Liao, and Raquel Urtasun. Implicit latent variable model for
scene-consistent motion forecasting. In European Confer-
ence on Computer Vision (ECCV), 2020. 2

[3] Chameleon Team. Chameleon: Mixed-Modal Early-Fusion
Foundation Models. arXiv preprint arXiv:2405.09818, 2024.
2

9

[4] Wei-Jer Chang, Francesco Pittaluga, Masayoshi Tomizuka,
Wei Zhan, and Manmohan Chandraker. Safe-sim:
Safety-critical closed-loop traffic simulation with diffusion-
controllable adversaries. arXiv preprint arXiv:2401.00391,
2024. 2

[5] Keyu Chen, Wenchao Sun, Hao Cheng, and Sifa Zheng. Rift:
Closed-loop rl fine-tuning for realistic and controllable traf-
fic simulation, 2025. 9

[6] Kashyap Chitta, Daniel Dauner, and Andreas Geiger. Sledge:
Synthesizing driving environments with generative models
and rule-based traffic. In European Conference on Computer
Vision, pages 57–74. Springer, 2024. 2

[7] Marco Cusumano-Towner, David Hafner, Alex Hertzberg,
Brody Huval, Aleksei Petrenko, Eugene Vinitsky, Erik Wi-
jmans, Taylor Killian, Stuart Bowers, Ozan Sener, Philipp
Krähenbühl, and Vladlen Koltun. Robust autonomy emerges
from self-play. arXiv preprint arXiv:2502.03349, 2025. 1, 2

[8] Wenhao Ding, Yulong Cao, Ding Zhao, Chaowei Xiao,
and Marco Pavone. Realgen: Retrieval augmented gen-
eration for controllable traffic scenarios. arXiv preprint
arXiv:2312.13303, 2023. 2

[9] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi
Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,
Charles R Qi, Yin Zhou, et al. Large scale interactive motion
forecasting for autonomous driving: The waymo open mo-
tion dataset. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9710–9719, 2021. 1,
5

[10] Lan Feng, Quanyi Li, Zhenghao Peng, Shuhan Tan, and
Bolei Zhou. Trafficgen: Learning to generate diverse and re-
alistic traffic scenarios. In 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3567–3575,
2023. 2

[11] Yihan Hu, Siqi Chai, Zhening Yang, Jingyu Qian, Kun Li,
Wenxin Shao, Haichao Zhang, Wei Xu, and Qiang Liu. Solv-
ing motion planning tasks with a scalable generative model.
In European Conference on Computer Vision, pages 386–
404. Springer, 2024. 2, 5, 6

[12] Siqi Kou, Jiachun Jin, Chang Liu, Ye Ma, Jian Jia, Quan
Chen, Peng Jiang, and Zhijie Deng. Orthus: Autoregressive
Interleaved Image-Text Generation with Modality-Specific
Heads. arXiv preprint arXiv:2412.00127, 2024. 2

[13] Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang,
Zhenghai Xue, and Bolei Zhou. Metadrive: Composing
diverse driving scenarios for generalizable reinforcement
learning. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2022. 1

[14] Nico Montali, John Lambert, Paul Mougin, Alex Kuefler,
Nicholas Rhinehart, Michelle Li, Cole Gulino, Tristan Em-
rich, Zoey Yang, Shimon Whiteson, et al. The waymo open
sim agents challenge. Advances in Neural Information Pro-
cessing Systems, 36:59151–59171, 2023. 2, 3, 5, 6

[15] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth
Goel, Khaled S. Refaat, and Benjamin Sapp. Wayformer:
Motion forecasting via simple & efficient attention networks.
In 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2023. 2

[16] Jonah Philion, Xue Bin Peng, and Sanja Fidler. Trajeglish:
Traffic modeling as next-token prediction. arXiv preprint
arXiv:2312.04535, 2023. 2

[17] Davis Rempe, Jonah Philion, Leonidas J Guibas, Sanja Fi-
dler, and Or Litany. Generating useful accident-prone driv-
ing scenarios via a learned traffic prior. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17284–17294, 2022. 2

[18] Luke Rowe, Roger Girgis, Anthony Gosselin, Bruno Car-
rez, Florian Golemo, Felix Heide, Liam Paull, and Christo-
pher Pal. Ctrl-sim: Reactive and controllable driving
agents with offline reinforcement learning. arXiv preprint
arXiv:2403.19918, 2024. 2

[19] Luke Rowe, Roger Girgis, Anthony Gosselin, Liam Paull,
Christopher Pal, and Felix Heide. Scenario dreamer: Vector-
ized latent diffusion for generating driving simulation envi-
ronments. arXiv preprint arXiv:2503.22496, 2025. 2

[20] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajec-
tory forecasting with heterogeneous data. In European Con-
ference on Computer Vision (ECCV), 2020. 2

[21] Ari Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou,
Nigamaa Nayakanti, Khaled S Refaat, Rami Al-Rfou, and
Benjamin Sapp. Motionlm: Multi-agent motion forecast-
ing as language modeling. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8579–
8590, 2023. 2

[22] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel
Urtasun. Trafficsim: Learning to simulate realistic multi-
agent behaviors. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
10400–10409, 2021. 2

[23] Shuhan Tan, Kelvin Wong, Shenlong Wang, Sivabalan Mani-
vasagam, Mengye Ren, and Raquel Urtasun. Scenegen:
Learning to generate realistic traffic scenes. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021. 2

[24] Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone,
and Philipp Kraehenbuehl. Language conditioned traffic
generation. In 7th Annual Conference on Robot Learning
(CoRL), 2023. 2

[25] Shuhan Tan, Boris Ivanovic, Yuxiao Chen, Boyi Li, Xinshuo
Weng, Yulong Cao, Philipp Krähenbühl, and Marco Pavone.
Promptable closed-loop traffic simulation. In 8th Annual
Conference on Robot Learning (CoRL), 2024. 2, 5, 6

[26] Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähen-
bühl. Interactive post-training for vision-language-action
models. arXiv preprint arXiv:2505.17016, 2025. 9

[27] Shuhan Tan, John Lambert, Hong Jeon, Sakshum Kul-
shrestha, Yijing Bai, Jing Luo, Dragomir Anguelov, Mingx-
ing Tan, and Chiyu Max Jiang. Scenediffuser++: City-scale
traffic simulation via a generative world model. In Proceed-
ings of the Computer Vision and Pattern Recognition Con-
ference (CVPR), pages 1570–1580, 2025. 2

[28] Changyao Tian, Xizhou Zhu, Yuwen Xiong, Weiyun Wang,
Zhe Chen, Wenhai Wang, Yuntao Chen, Lewei Lu, Tong
Lu, Jie Zhou, Hongsheng Li, Yu Qiao, and Jifeng Dai.

10

Mm-interleaved: Interleaved image-text generative model-
ing via multi-modal feature synchronizer. arXiv preprint
arXiv:2401.10208, 2024. 2

[29] Jingkang Wang, Ava Pun, James Tu, Sivabalan Mani-
vasagam, Abbas Sadat, Sergio Casas, Mengye Ren, and
Raquel Urtasun. Advsim: Generating safety-critical sce-
narios for self-driving vehicles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9909–9918, 2021. 2

[30] Cathy Wu, Abdelrahman Kreidieh, Karthik Parvate, Eugene
Vinitsky, and Alexandre M Bayen. Flow: A modular learn-
ing framework for mixed autonomy traffic. In IEEE Trans-
actions on Robotics, pages 1677–1689, 2021. 1

[31] Wei Wu, Xiaoxin Feng, Ziyan Gao, and Yuheng KAN.
Smart: Scalable multi-agent real-time motion generation via
next-token prediction. In Advances in Neural Information
Processing Systems, pages 114048–114071. Curran Asso-
ciates, Inc., 2024. 1, 2, 3, 5, 6, 7, 8

[32] Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang,
Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie
Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o:
One single transformer to unify multimodal understanding
and generation. arXiv preprint arXiv:2408.12528, 2024. 2

[33] Yuting Xie, Xianda Guo, Cong Wang, Kunhua Liu, and
Long Chen. Advdiffuser: Generating adversarial safety-
critical driving scenarios via guided diffusion. arXiv preprint
arXiv:2410.08453, 2024. 2

[34] Zixun Xie, Sicheng Zuo, Wenzhao Zheng, Yunpeng Zhang,
Dalong Du, Jie Zhou, Jiwen Lu, and Shanghang Zhang. Gpd-
1: Generative pre-training for driving, 2024. 6

[35] Chejian Xu, Ding Zhao, Alberto Sangiovanni-Vincentelli,
and Bo Li. Diffscene: Diffusion-based safety-critical sce-
nario generation for autonomous vehicles. AdvML-Frontiers
2023, 2023. 2

[36] Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone.
Bits: Bi-level imitation for traffic simulation. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), page 2929–2936. IEEE, 2023. 2

[37] Zhiyang Xu, Minqian Liu, Ying Shen, Joy Rimchala, Jiaxin
Zhang, Qifan Wang, Yu Cheng, and Lifu Huang. Modality-
specialized synergizers for interleaved vision-language gen-
eralists. In International Conference on Learning Represen-
tations (ICLR), 2025. 2

[38] Xiuyu Yang, Zhuangyan Zhang, Haikuo Du, Sui Yang, Feng-
ping Sun, Yanbo Liu, Ling Pei, Wenchao Xu, Weiqi Sun,
and Zhengyu Li. Rmmdet: Road-side multitype and multi-
group sensor detection system for autonomous driving. arXiv
preprint arXiv:2303.05203, 2023. 2

[39] Chris Zhang, James Tu, Lunjun Zhang, Kelvin Wong, Simon
Suo, and Raquel Urtasun. Learning realistic traffic agents in
closed-loop. In 7th Annual Conference on Robot Learning,
2023. 2

[40] Zhejun Zhang, Christos Sakaridis, and Luc Van Gool. Traf-
ficbots v1. 5: Traffic simulation via conditional vaes and
transformers with relative pose encoding. arXiv preprint
arXiv:2406.10898, 2024. 2, 5, 6

[41] Zhejun Zhang, Peter Karkus, Maximilian Igl, Wenhao Ding,
Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Closed-
loop supervised fine-tuning of tokenized traffic models. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2025. 2, 3, 5, 6, 7, 9

[42] Jianbo Zhao, Jiaheng Zhuang, Qibin Zhou, Taiyu Ban, Ziyao
Xu, Hangning Zhou, Junhe Wang, Guoan Wang, Zhiheng Li,
and Bin Li. Kigras: Kinematic-driven generative model for
realistic agent simulation. arXiv preprint arXiv:2407.12940,
2024. 2

[43] Tianyang Zhao, Yuke Xu, Mathew Monfort, Wongun Choi,
Chris Baker, Yibiao Zhao, Yizhou Wang, and Ying Nian Wu.
Multi-agent tensor fusion for contextual trajectory predic-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[44] Ziyuan Zhong, Davis Rempe, Yuxiao Chen, Boris Ivanovic,
Yulong Cao, Danfei Xu, Marco Pavone, and Baishakhi Ray.
Language-guided traffic simulation via scene-level diffusion.
In Conference on Robot Learning, pages 144–177. PMLR,
2023. 2

[45] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen,
Sushant Veer, Tong Che, Baishakhi Ray, and Marco Pavone.
Guided conditional diffusion for controllable traffic simula-
tion. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 3560–3566. IEEE, 2023. 2

[46] Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang,
Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, and
Chun Jason Xue. Behaviorgpt: Smart agent simulation
for autonomous driving with next-patch prediction. arXiv
preprint arXiv:2405.17372, 2024. 2

11

Long-term Traffic Simulation with
Interleaved Autoregressive Motion and Scenario Generation

Supplementary Material

A. Supplementary Videos
We provide additional videos for better demonstration of
InfGen. In this video, we showcase the existing problem
of current baselines, as introduced in Sec. 1, and the com-
parison between baselines and our method. Then we have
more qualitative examples. Please refer to our project page
for details.

B. Model Details
In this section, we provide more details of InfGen model.
We give an overview of the main hyperparameters of the
model architecture, and explain the setup of agent embed-
ding and query which are directly operated by transformer
decoder. Then we describe more about how to decode vari-
ous outputs.

Hyperparameters. We extend the base model from
SMART-7M [31] to train out InfGen model. We also have
the detailed descriptions about the transformer decoders in
Sec. 4.2, and we list all the main hyperparameters of the
model architecture and our implementations in Table. 5.

Note that we also inherit the road network from [31]
(See Sec.3.3 of their paper) in our NTP pre-training pro-
cess (where the Map-Map Attention Layers are incorpo-
rated). Since we adopt the map tokenizer and transform
maps into discrete tokens, this network will help the model
to understand the topological connectivity and continuity
of unordered map tokens. Finally, the total model size of
InfGen is around 11M.

B.1. Agent Feature Learning

Agent Embedding. In our stacked attention layers, we di-
rectly operate on different tokens according to each specific
task. For practical purposes, we construct a comprehen-
sive aggregated agent embedding Fagent ∈ RT×D (where T
denotes the rollout horizon) to process them uniformly as
token sequences in the transformer layers, as mentioned in
Sec. 4.3. Specifically, we obtain the km, vm in Eq. 3, 4, 5
from tokens of different modalities through direct fusion,
as Eq. 9. We first concatenate all the features on channel
dimension and then produce the agent embedding through
1-layer MLP which is directly operated by transformer lay-
ers:

MLP(Concat(Fmotion, Fposition, Fvalidity, Fattribute)), (9)

where validity denotes if the agent at current timestep is vis-
ible by the environment, which is labeled in real log data.

Table 5. Main hyperparameters of InfGen model.

Hyperparameter Value

Transformer Decoder
attention head dimension 16
number of attention heads 8
number of motion transformer blocks 6
number of scene transformer blocks 3
number of map transformer blocks 3
D, feature dimension of token embedding 128
number of frequency bands 64
tw, Agent temporal Attention radius 12
ra↔a, Agent-Agent Attention radius 60
rm↔a, Map-Agent Attention radius 30
rm↔m, Map-Map Attention radius 10
rq←a, Query-Agent Attention radius 10
rq←m, Query-Map Attention radius 75,10

Tokenizer
R, radius of position grids 75
∆g, grid interval of Vpos 3
∆θ, angle interval of Vhead 3
|Vmotion|, vocabulary size of motion tokens 2048
|Vmap|, vocabulary size of map tokens 1024
|Vpos|, vocabulary size of position tokens 1849
|Vhead|, vocabulary size of heading tokens 120
|Vcontrol|, vocabulary size of control tokens 4

And Fattribute aggregates the shape and type values of each
agent. Notably, validity ∈ RT×1 here reflects not only
the state of agent but also implicitly embeds the control to-
kens. To get all these features from their low-dimension
values, we use MLP Layers for those in continuous space
(e.g., agent shapes) and learnable embeddings for those in
discrete space. Finally, we have the dynamic agent matrix
tensor FA′ ∈ RA×T×D (as the matrix in Fig. 3) which is
continuously updated during the rollout in an interleaved
autoregressive manner.

Agent Query. As we explained in Sec. 4.2, we start from
an agent query a0 to autoregressively insert the agents in
spatial scene generation. Ideally, we consider that the spa-
tiotemporal features of the agent query are fully aligned
with the ego agent, i.e., it follows the ego agent’s position
and motion. Since we are primarily concerned with the en-
vironment around the ego agent in this task, and the position
tokens Vpos are also centered at the ego agent. To build this
query, we take exactly the same approach as Eq. 9. For its

1

https://orangesodahub.github.io/InfGen/

motion token, we directly use another new special token in-
stead of any existing token from Vmotion. For its position
token, we fix it as the centroid of the Vpos. For its validity,
we set it as invalid. And we use new special agent type and
shape values as its inherent attributes.

B.2. Modeling Layer

Position-aware Attention. We explicitly model the rela-
tive spatial-temporal positions between input tokens in at-
tention calculation (as in Eq. 3, 4, 5). For each query-
context token pair (e.g., agent-agent or agent-map), we add
the relative positional encoding from context token Fc to
query token Fq (Fc, Fq ∈ RD are from FA′).

Specifically, we incorporate 3 types of descriptors: rel-
ative distance ∆p, the relative direction ∆d, the relative
heading ∆θ, where p ∈ R2 and θ ∈ (−π, π) denotes the
positions and headings of input tokens. For temporal at-
tention module (Eq. 3), we add additional time span ∆t to
formulate 4D descriptors:

∆pcq = ||pc − pq||2, ∆θcq = θc − θq, ∆tcq = tc − tq,

∆dcq = atan2(pc,y − pq,y, pc,x − pq,x)− θq,
(10)

which are formulated to rij ∈ RD, the relative positional
encodings of tokens Fi,Fj and then added to keys, values in
geometric attention layers (Eq.3,4,5):

rij = PE([∆pij ,∆dij ,∆θij ,∆tij]), (11)

F l
A′ = Attn(ϕq(F

l−1
A′), ϕk(F

l−1
A′), ϕv(F

l−1
A′), r, I). (12)

In Equation 11, PE is the Fourier embedding layers. In
Equation 12, (i, j) ∈ I and I ∈ NK×2 indicates the directed
or symmetric index set of total involved K context-query to-
ken pairs which are determined through distance thresholds
rq←c (visible range centered on query token specified in Ta-
ble 5) with the upper limitation of number of total context
tokens Nc. While r ∈ RK×D denotes the stacked positional
encodings of total K pairs. And ϕ represents the projection
function to query, key and value, l reflects the index of at-
tention layer.

Decoding Pose Token. As described in Sec. 4.2 and
Fig. 3, we sample new pose token from the categorical dis-
tributions from the updated query feature fa0

at each autore-
gressive step, simultaneously with the control token. We
detail the decoding process of the pose tokens:

we formulate the pose head as the sequentially connected
position head and heading head, in this case we decode pose
token through two separate steps. Given an agent query a0,
we attach it to the ego agent to attend to environments with
position-awareness, and produce the scene generation fea-
ture q′a0

. We then first input it to position head to get the dis-
tribution over the position tokens Vpos, from which we get
the position token of the new agent candidate through top-K

sampling. Secondly, we get the updated agent query a′0 by
locating it at the accurate position which is translated from
the position token, with its heading same as the one of the
ego agent. And again let a′0 to attend to its environment and
output refined feature q′a′

0
, then send it to the heading head

to get another probability distribution over the heading to-
kens Vhead. The headings of the new agents are determined
by sample the token with the highest probability. In step of
decoding headings of new agents, only Agent-Agent Atten-
tion and Map-Agent Attention will be employed, since we
consider the headings are highly related to the surrounding
agents and maps, but not the occupancy grids.

Note that, in Map-Agent Attention Layers, we use differ-
ent visible range when decoding position tokens and head-
ing tokens. For position tokens, we use an r = 75m while
for heading tokens, r = 10m (also specified in Table 5).
We autoregressively repeat such position-heading decoding
step which is controlled by control tokens.

Decoding Attributes. As mentioned in Eq. 8, for those
newly-inserted agents, we also calculate the losses of their
shapes and types, since these attributes also have inher-
ent relationship with their initial pose. We directly predict
the continuous shapes value (l, h, w) through 3-layer MLP
head. To get the types, we predict the categorical distribu-
tions over 3 defined types in WOMD (vehicle, cyclist and
pedestrian) and take top-1 sampling.

C. Token Details
In this section, we have more details regarding the design of
our tokenization mechanisms, especially the control tokens,
and the formulations of GT tokens used for training.

Temporal Tokenization. Regarding the tokens associ-
ated with temporal transitions, e.g., motion tokens, con-
trol tokens, we first tokenize the time axis at time span of
δ = 5 step (0.5 s at 10FPS), as Eq. 13. Accordingly, a real
log from WOMD [14] (n = 91 steps for 9.1 s) results in
N = ⌊n/δ⌋ = 18 discrete tokens.

Tokenize({x0,x1, · · · ,xn−1}) = {x̂0, x̂1, · · · , x̂N−1},
(13)

where x denotes features with temporal transitions, e.g.,
motions xm, validities xv. Importantly, the value of each
x̂ is defined based on different rules. For motions, each
x̂m
k is aggregated motions vector xm

δk : δ(k+1) over the k-th
time segment, as mentioned in Sec. 4.1. Furthermore, re-
garding the validity of agents, we consider both the starting
and ending steps within its time segment: x̂v

k is considered
True if and only if both xv

δk and xv
δ(k+1) are True, i.e.,

x̂v
k = xv

δk ∧ xv
δ(k+1), as a motion token is meaningful only

when x̂ is valid.

Control Tokens. We aim to explain how to derive the
control tokens from real logs. Starting from the token-wise

2

validity sequences (Eq. 13), we define the <ADD AGENT> to-
ken as:

x̂c
k1

when x̂v
k1

= True and ∀ 0 ≤ i < k1, x̂
v
i = False,

(14)
and the <REMOVE AGENT> token x̂c

k2
is symmetrically de-

fined as the last valid token such that all subsequent ones
are invalid, i.e., ∀ k2 < i ≤ N −1, x̂v

i = False. Thus, we
set all tokens between <ADD AGENT> and <REMOVE AGENT>,
x̂c
k (k1 < k < k2), as the <KEEP AGENT> token.

Notably, for two special cases: 1) we force the x̂c
k1

with
k1 = 0 of Eq. 14 to be <ADD AGENT>; 2) for any <REMOVE

AGENT> token x̂c
k2

with k2 = N−1, we force it to be instead
<KEEP AGENT>.

As we explained in Sec. 4.2, the tokens <ADD AGENT>

and <BEGIN MOTION> only present when we examine the
dynamic agent matrix column-wise. Therefore, when we
organize the tokens sequence according to the spatial lay-
out (as opposed to Eq. 13), <BEGIN MOTION> is defined as
the next token after all the <ADD AGENT> tokens:

x̂c
l when ∀ i < l, x̂c

i is <ADD AGENT>. (15)

Moreover, for these <ADD AGENT> tokens of the GT spatial
sequence, they are ordered according to the distances from
the ego agent, as explained in Sec. 4.4.

Empty Token. Since we incorporate the invalid steps/a-
gents, e.g., those with x̂v = False, into InfGen model,
we also involve the empty tokens shown in Figure 3, as part
of dynamic agent matrix tensor FA′ ∈ RA×T×D. To build
these invalid agent embeddings, we follow the similar meth-
ods of the agent query, but set their positions and headings
to zeros.

Introducing these invalid values can bring unexpected
noise within the modeling layers (in Sec. 4.2), specifically,
interactions between tokens from different timesteps or dif-
ferent agents when any side of them has x̂v = False,
which arise from two sources: 1) the construction of dy-
namic agent matrix tensor FA′ (Eq. 9); 2) position-aware
attention layers (Eq. 10, 11). We address them through ap-
plying the rules:

x̂invalid − x̂invalid ← −zinvalid, (16a)
x̂valid − x̂invalid ← ztrans, (16b)
x̂invalid − x̂valid ← −ztrans, (16c)

where x̂ denotes tokens of various features, e.g., motion to-
kens x̂m, heading tokens x̂h, and x̂invalid, x̂valid reflect their
corresponding x̂v are False,True, respectively. We force
these values to be our predefined constant values z to elim-
inate such noises due to the non-constant x̂valid. Since the
model actually only needs the qualitative characteristic of
the transition between invalid and valid states, rather than
the specific quantitative values. In our experiments, we set

ztrans = 1 and zinvalid = −2. Without Equation 16, InfGen
will suffer from the disruptive noises, preventing effective
modeling of the control sequence.

D. Training Details

As we summarized in Sec. 4.4, we efficiently end-to-end
train InfGen model on multimodal token sequences. Ba-
sically, we parallelly train temporal motion simulation and
spatial scene generation as standard NTP task of each indi-
vidual token modality, and perform interleaved autoregres-
sion in inference stage. We break down the details of the
each aspect for training process in this section.

D.1. Temporal Simulation

Temporal Motions Training. We train on temporal mo-
tion tokens similar to prior works [31], and additionally
deal with the transition of before and after an agent is in-
serted or removed. Given the temporal discrete tokens
of one agent in Eq. 13, we have their GT motion tokens
{x̂m

k }
N−1
k=0 ⊆ Vmotion, validities {x̂v

k}
N−1
k=0 ⊆ {0, 1} (0 =

False, 1 = True), and, furthermore, the control tokens.
From the view of the temporal axis, <ADD AGENT> denotes
the start of the sequence (BOS) while <REMOVE AGENT> de-
notes the end of the sequence (EOS). Therefore, we refer to
the states of the agent as its validities combined with BOS
and EOS.

To supervise the motion tokens tensor Y m ∈ RN

predicted by motion head, we derive the motion mask
Mm ∈ BN from the states3 (Note that masks M are tem-
porally aligned with prediction sequences, not groud-truth
sequences). Assuming the step of the BOS and EOS are
sBOS, sEOS, then we have:
1) MsBOS = 1: the step of BOS;
2) MsBOS+1 = xv

sBOS+2 (with xv
sBOS

= xv
sBOS+1 = 1): the

next step after BOS;
3) Ms = xv

s−1 · xv
s · xv

s+1, ∀s, sBOS + 1 < s < sEOS: the
steps between the step after BOS and EOS (not included)
only when the corresponding GT motions are valid.

Otherwise, the steps not satisfy the conditions above have
Ms = 0, including the EOS. Let Xm := {x̂m

k }
N−1
k=0 , then the

total loss for N motion tokens is:

Lm
1:N =

1

|I|
∑
k∈I

CE
(
Y m
k , Xm

k

)
, I = {k |Mm

k = 1},

(17)
where CE is the CrossEntropy loss, as also described in
Eq. 7.

Temporal Controls Training. In the part of temporal
simulation, we train on temporal control tokens {x̂c

k}
N−1
k=0 ⊆

3We omit the superscript of M in this section when possible for sim-
plicity.

3

{<NULL>, <KEEP AGENT>, <REMOVE AGENT>} similar to mo-
tion ones. We have described how to derive the control
tokens <KEEP AGENT> and <REMOVE AGENT> from the validi-
ties in Sec. C. And we have <NULL> as the placeholder to-
ken to indicate those steps without any control operations,
which allows Xct to fully represent the entire GT temporal
token sequence.

To supervise the control tokens tensor Y ct ∈ RN pre-
dicted by control head, we derive the temporal control mask
M ct ∈ BN from the states. Here we have:
1) Ms<sBOS = 0: the steps before BOS (not included);
2) MsBOS = 1: the step of BOS;
3) MsBOS+1 = xv

sBOS+2 (with xv
sBOS

= xv
sBOS+1 = 1): the

next step after BOS;
4) Ms≥sEOS = 0: the steps after EOS (included);
5) Ms = xv

s−1 · xv
s · xv

s+1, ∀s, sBOS + 1 < s < sEOS: the
steps between the step after BOS and EOS (not included)
only when the corresponding GT motions are valid.

Then the total loss Lct
1:N for the entire temporal control to-

ken sequence is calculated similar to Equation 17 which
takes Y ct,Xct,M ct as inputs. Note that the steps with Ms =
1(sBOS < s < sEOS − 1) correspond to the <KEEP AGENT>

tokens, while those with Ms = 1(s = sEOS−1) correspond
to the <REMOVE AGENT> tokens. To alleviate the imbal-
ance of these two control tokens, we set the label weights:
w(<KEEP AGENT>) = 0.1 and w(<REMOVE AGENT>) = 0.9
when calculating the CrossEntropy Loss.

D.2. Spatial Generation

Spatial Controls Training. For the spatial scene gen-
eration, we train on the control sequence {x̂cs

k }Lk=0 ⊆
{<NULL>, <ADD AGENT>, <BEGIN MOTION>}. And L denotes
the total number of agents (including those existing and to
be added) in a real log and we force L = 32 in training pro-
cess for saving memory. We also use <NULL> as the place-
holder for those agents without controls (e.g., existing and
not to be added ones), allowing Xcs to fully represent the
entire GT spatial token sequence.

To formulate the spatial token sequence Xcs, we reor-
ganize the all L agents along the spatial axis, as explained
in Sec. C, the first sequence (BOS) when scene generation
begins, while <BEGIN MOTION> denotes sequence (EOS).
Hence, the tokens between BOS and EOS (not included)
are all <ADD AGENT> tokens, and <NULL> only present after
EOS which corresponds to those agents currently in motion
simulation.

As a considerable number of the trailing tokens in Xct

are <NULL> that cannot be trained, we further truncate the
trailing part of Xct—only consider the first L′ = 10 tokens
in training for more efficiency. And the size of Xcs in infer-
ence is scalable since we train in an autoregressive way.

To supervise the control tokens tensor Y cs ∈ RL′
pre-

dicted by control head, we also have the mask M ct ∈ BL′

following:
1) MsBOS = 1: the step of BOS;
2) Ms≥sEOS = 0: the steps after EOS (included);
3) Ms = 1, ∀s, sBOS < s < sEOS: the steps between BOS

and EOS (not included).
Then the total lossLcs

1:M ′ for the spatial control tokens is ob-
tained similar to Equation 17. We also have label weights:
w(<ADD AGENT>) = 0.1 and w(<BEGIN MOTION>) = 0.9 to
deal with the class imbalance.

Spatial Hybrid Attention. To model such spatial se-
quence Xct in an autoregressive manner, we adapt the
causal attention mechanism (in Agent-Agent Attention lay-
ers) similar to the Temporal Attention layers.

Specifically, when predicting token x̂t (e.g., motion to-
ken x̂m

t , control token x̂c
t) in temporal simulation, it will

only involve the history tokens {x̂t−τ}tw
τ=1 within the time

window as the context (as Eq. 3). Therefore, given the spa-
tial token sequence Xcs ∈ RL′

and there exist A′ agents
already in motion simulations, we construct a hybrid mask
M ct

hybrid ∈ BL′×(A′+L′) which consists of two parts:
1) For those A′ agents that already exist, they will not be

masked out: M ct
hybrid[1 :L

′, 1:A] = 0L′×A.
2) For those L′ agents to be predicted (may not all corre-

spond to <ADD AGENT>), we have M ct
hybrid[1 : L

′, A+1 :
A+L′] to be a standard causal mask to exclude the fu-
tures in attention layers.

We can wite it as:

M cs
hybrid[i, j] =

{
0, if j ≤ i or j < A′

−∞, otherwise
, (18)

where i ∈ [1, L′], j ∈ [1, A′ + L′]. Note that the ulti-
mate context which query features attend to is determined
by jointly applying M cs

hybrid and other possible masks (e.g.,
from the visible range).

In this way, we train on spatial token sequence with
smaller context length L′ = 10 while extend it to a scal-
able number (> 10) with an upper limit of 128.

E. Additional Results

Long-term Traffic Simulation. We show more qualita-
tive comparison results of InfGen and the baselines [24,32]
in Fig. 9, 10,and 11. In these scenario, we again demon-
strate the strengths of our approach. As the ego agent trav-
els for away from the initial locations, new agents appear
in our examples while maintaining a great realism, seam-
lessly continuing the interaction process. This indicates that
InfGen can effectively one of the major challenges of long-
term traffic simulation task.

Metrics Curve for Long-term Simulation. We further
investigate how simulation realism evolves over the dura-
tion of long-term rollouts by plotting metric scores for each

4

Figure 6. Metrics (adapted WOSAC) curve of InfGen against
SMART [31] over the 30s long-term simulation rollouts.

sliding window index in Figure 6. Specifically, we show the
evolution of three WOSAC metric components (Composite,
Kinematic, and Placement-based) for both our method and
SMART [24].

As expected, we observe a gradual decrease in real-
ism scores across all methods, reflecting the increasing
difficulty of maintaining realism over extended simulation
periods. However, our method consistently outperforms
SMART by exhibiting a notably slower decline in all met-
rics, particularly in the placement-based component. This
significant improvement highlights the effectiveness of our
proposed interleaved scene generation and motion simula-
tion approach, enabling sustained realism by dynamically
handling agent insertions and removals. These quantita-
tive results strongly align with our qualitative observations,
further emphasizing the importance of explicitly modeling
agent placement and removal to achieve realistic long-term
traffic simulations.

F. Limitations and Future Direction
Although InfGen has achieved promising results on long-
term traffic simulation, our method is limited in some as-
pects, as briefly described in Sec. 6. In this section, we have
detailed discussions on these terms.

Failure Cases. We have some failure cases existed:
(1) Unreasonable inserted agents. In some examples,

our method may have unreasonable newly entered agents
in traffic scenario. As shown in Fig. 7, at t = 6 s and
t = 12 s, the agents highlighted by red boxes occupy the
road boundaries, which is unrealistic in real-world scenar-
ios. It indicates that our method lacks sufficient control at
such a fine-grained level. Notably, we did not impose any
explicit constraints on this kind of cases, such as regulariza-
tion losses.

(2) Incorrect initial motion inferring. During the spatial
sequence prediction, InfGen first observes overall traffic
scenario before placing new agents in potential locations.
When these agents are located in a complex road situation,
they may fail to accurately infer their initial velocity (or mo-

t = 1s t = 6s t = 12s

Figure 7. Failure case #1: newly-entered agents appear unreason-
ably on the boundary of the road.

t = 1s t = 6s t = 12s

Figure 8. Failure case #2: In the region with complex map struc-
ture (highlighted by red box), newly-entered agents fail to cor-
rectly infer their initial velocity (or motion) and remain stationary,
which is unrealistic.

tion) for the subsequent rollout. For example, as shown in
Fig. 8, some new agents incorrectly remain stationary on
the driving lanes, which also impacts the motions of other
agents, ultimately reducing the realism.

(3) Agents flickering modeling. According to our obser-
vations, the phenomenon of agents “flickering” is prevalent
in real-world data, particularly in regions farther from the
ego agent. And it arises due to the instability of the ego
agent’s remote perception. In our work, we handle these
flickering agents in two ways: first, we discard agents with a
presence duration shorter than 0.5 s; second, we change the
flickering frequency, which can be attributed to the resolu-
tion of discretization on time axis (as introduced in Sec. C).
Specifically, the minimum temporal granularity that each
token can represent is 0.5s. As a result, InfGen inherently
struggles to generate highly realistic agents exhibiting flick-
ering behavior.

A potential solution is to introduce another format of to-
kens Vvalidity which reflects the frame-wise validity within
even one 0.5 s token, and make InfGen learn it in temporal
simulation. Given that each 0.5 s segment contains 5 valid
timesteps, with each step has 2 possible states (invalid, and
valid), we can derive the vocabulary size: 25 = 32. But
the task becomes more complex under such conditions. We
leave this as a future direction.

Future Directions. In addition to addressing the limita-
tions discussed, some other potential interesting improve-
ments may be as below:

(1) Long context understanding and learning. While
InfGen effectively addresses the challenge faced by Long-
term Sim Agent—modeling the insertion and deletion of

5

agents interleaved with their motions in continuously evolv-
ing traffic scenarios to maintain high realism over extended
rollout durations—we believe that another critical bottle-
neck for even longer horizons is the accumulation of errors
over the rollout process. In our work, we adhere to a uni-
fied next-token prediction paradigm for end-to-end training,
with reference to a historical information constrained by the
temporal length. Some hard cases in a long-long-term roll-
out may fail: in a busy intersection where the lateral traffic
passes, followed by the longitudinal traffic while other dif-
ferent lanes remain open, the execution intervals of differ-
ent actions can be significantly long, and the rules can be
greatly complex. Some works [25, 41] utilize closed-loop
training or finetuning for improvements, which also cannot
be a solution. Thus, it remains an other challenge.

(2) Driving Map Generation. The duration of long-term
rollout controlled by InfGen is significantly constrained
by the size of the map region—-without this limitation, it
would be possible to extend the rollout even further. There-
fore, integrating the map generation would be a substan-
tial improvement, enabling longer and more flexible simu-
lations. Some concurrent works, such as GPD-1 [34], have
some progress in this point, making it a promising direction
for near future.

G. License
The Waymo Open Motion Dataset (WOMD) [14] we used
in our work is licensed under Waymo Dataset License
Agreement for Non-Commercial Use4.

The implementations of official WOSAC metrics5 based
on which we develop our extended metrics are licensed un-
der the Apache License, Version 2.0.

4https://waymo.com/open/terms/
5https://github.com/waymo-research/waymo-open-dataset/

6

https://waymo.com/open/terms/
https://github.com/waymo-research/waymo-open-dataset/

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

O
ur

s
SM

A
R

T

t = 1s t = 6s t = 12s t = 18s t = 24s t = 30s

O
ur

s
SM

A
R

T

Figure 9. More qualitative comparison results #1.

7

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

O
ur

s
SM

A
R

T

t = 1s t = 6s t = 12s t = 18s t = 24s t = 30s

O
ur

s
SM

A
R

T

Figure 10. More qualitative comparison results #2.

8

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

O
ur

s
SM

A
R

T

t = 1s t = 6s t = 12s t = 18s t = 24s t = 30s

Figure 11. More qualitative comparison results #3.

9

	Introduction
	Related Work
	Problem Formulation
	InfGen
	Tokenization
	Interleaved Next Token Prediction
	Model Architecture
	Training
	Experiments
	WOMD Sim Agent Challenge
	Long-term Traffic Simulation Setup
	Long-term Traffic Simulation Evaluation
	Ablation Study

	Conclusion

	Supplementary Videos
	Model Details
	Agent Feature Learning
	Modeling Layer

	Token Details
	Training Details
	Temporal Simulation
	Spatial Generation
	Additional Results
	Limitations and Future Direction
	License

